Identification of Film-Forming Species during SiC-CVD of CH3SiCl3/H2 by Exploiting Deep Microtrenches
The surface reaction kinetics of chemical vapor deposition (CVD) of silicon carbide (SiC) from methyltrichlorosilane (MTS; CH3SiCl3) and hydrogen were studied to identify gaseous species contributing to SiC film formation. First, SiC was deposited into relatively deep microtrenches with aspect ratio...
Gespeichert in:
Veröffentlicht in: | ECS journal of solid state science and technology 2019-01, Vol.8 (8), p.P423-P429 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The surface reaction kinetics of chemical vapor deposition (CVD) of silicon carbide (SiC) from methyltrichlorosilane (MTS; CH3SiCl3) and hydrogen were studied to identify gaseous species contributing to SiC film formation. First, SiC was deposited into relatively deep microtrenches with aspect ratios of up to 64:1, and the film-thickness profiles within the deep microtrenches were analyzed to evaluate the sticking probabilities (η) of the film-forming species. Two film-forming species were identified with η of 10−2 and 10−5 at 1,000°C. Next, their partial pressures at several positions in the reactor were estimated from their respective η and deposition rates. The low-η species was identified as MTS by comparing the partial pressure measured by quadrupole mass spectrometer with that calculated by elementary reaction simulations. Similarly, the high-η species was likely CH2SiCl3 generated via gas-phase decomposition of MTS. Such identification is crucial to optimize the deposition conditions and also design of a reactor. |
---|---|
ISSN: | 2162-8769 |
DOI: | 10.1149/2.0191908jss |