Improved Adhesion of Metal Electrode Layer on Si3N4 Substrate through an All-Wet Process
Electroless deposition requires preliminary surface treatment to effectively adsorb a metal electrode layer onto a ceramic substrate. Herein, a simple surface treatment using an all-wet process was performed to achieve adhesion stability between a Si3N4 substrate and Ni film. The method involved dep...
Gespeichert in:
Veröffentlicht in: | ECS journal of solid state science and technology 2019-01, Vol.8 (2), p.P159-P164 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electroless deposition requires preliminary surface treatment to effectively adsorb a metal electrode layer onto a ceramic substrate. Herein, a simple surface treatment using an all-wet process was performed to achieve adhesion stability between a Si3N4 substrate and Ni film. The method involved deposition of an interfacial Pd-TiO2 buffer between the two layers. Surface pretreatment via silanization was initially performed to improve surface wettability, thereby enhancing uniform deposition of Pd-TiO2. Subsequently, a thin Ni layer was directly deposited onto the Pd-TiO2 layer without necessitating sensitization or activation. The synthesized Ni/Pd-TiO2/Si3N4 heat sink exhibited excellent adhesion property in the cross-hatch, scratch, and thermal shock tests. The mechanism of adhesion enhancement involved chemical bonding of Pd-TiO2 with the self-assembled monolayer on the substrate and reduced internal stress due to removal of residual hydrogen between the layers of the heat sink. Thus, the fabricated heat sink has a promising application in electronic devices operated at high temperatures. |
---|---|
ISSN: | 2162-8769 |
DOI: | 10.1149/2.0171901jss |