High-Energy Nickel-Rich Layered Cathode Stabilized by Ionic Liquid Electrolyte

In order to meet the critical energy-storage challenges of the future, a next-generation lithium-ion battery will need to achieve a higher energy density and longer cycle life. While increasing the nickel content in layered LiMO2 (M = Ni, Mn, Co) significantly improves the capacity of the material,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2019, Vol.166 (6), p.A873-A879
Hauptverfasser: Heist, Ashley, Hafner, Simon, Lee, Se-Hee
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to meet the critical energy-storage challenges of the future, a next-generation lithium-ion battery will need to achieve a higher energy density and longer cycle life. While increasing the nickel content in layered LiMO2 (M = Ni, Mn, Co) significantly improves the capacity of the material, nickel-rich cathodes cycled in conventional organic electrolytes commonly suffer from crystallographic phase transformation and the growth of a resistive interfacial layer, both of which result in voltage fade and capacity degradation during cycling. However, pairing a nickel-rich cathode with an appropriate ionic liquid (IL) electrolyte enables exceptional cycling stability and energy retention. This work demonstrates how a pyrrolidinium-based IL electrolyte not only allows for cycling to higher voltages but shows a 95% energy retention and average discharge capacity of 189 mAh g−1 over 150 cycles between 3 and 4.5 V vs. Li/Li+ with a nickel-rich layered cathode. Based on electrochemical and crystallographic analyses, the exceptional performance of the cells cycled in IL is attributed to the stability of the electrode-electrolyte interfacial layer formed by the IL which protects the active material and suppresses the structural degradation commonly observed in nickel-rich cathodes.
ISSN:0013-4651
1945-7111
DOI:10.1149/2.0071906jes