State-of-Health Estimation of Lithium-ion Batteries Based on Singular Value Decomposition and an Improved Group Method of Data Handling

Lithium-ion batteries are complex electrochemical systems, and the degradation of their state of health (SOH) is a nonlinear process. Accurate SOH estimation is critical to lithium-ion battery life and safety. This paper uses a data-driven approach to study SOH estimation of lithium-ion batteries. F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2024-01, Vol.171 (1), p.10525
Hauptverfasser: Li, Junhong, Bai, Guixiang, Yan, Jun, Hua, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lithium-ion batteries are complex electrochemical systems, and the degradation of their state of health (SOH) is a nonlinear process. Accurate SOH estimation is critical to lithium-ion battery life and safety. This paper uses a data-driven approach to study SOH estimation of lithium-ion batteries. Firstly, this paper uses the singular value decomposition (SVD) method to extract features from the battery charging history data. Secondly, the particle swarm optimization (PSO) algorithm is used to optimize the parameter configuration of the group method of data handling (GMDH). Finally, the SOH estimation is completed using the optimized GMDH. The results show that the proposed PSO-GMDH estimation model maintains an error within 0.89% for estimating its subsequent SOH using historical data of a certain battery, and maintains an error within 0.5% for estimating the SOH of another battery of the same model using historical data of multiple batteries. At the same time, the results also show that the PSO-GMDH estimation model has higher estimation accuracy than the GMDH model without parameter optimization.
ISSN:0013-4651
1945-7111
DOI:10.1149/1945-7111/ad1e40