Conceptual Design of Solid-State Li-Battery for Urban Air Mobility

The negative impact of internal combustion engines on the environment is a major concern in metropolitan areas due to the continued rapid growth and high overall level in the number of vehicles, population, and traffic congestion. Electric vertical take-off and landing (eVTOL) aircraft promises a ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2023-10, Vol.170 (10), p.103510
Hauptverfasser: Toghyani, S., Cistjakov, W., Baakes, F., Krewer, U.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The negative impact of internal combustion engines on the environment is a major concern in metropolitan areas due to the continued rapid growth and high overall level in the number of vehicles, population, and traffic congestion. Electric vertical take-off and landing (eVTOL) aircraft promises a new era for urban regional transportation and air mobility to address the challenges mentioned above. Nonetheless, providing electrical energy storage systems, like batteries, is one of the key issues with such aircraft. Here, the non-flammable technology of all-solid-state Li batteries with high theoretical gravimetric energy is an attractive option. Modelling allows for a knowledge-driven assessment of the potential of this technology. We here used a combination of a pseudo-2-dimensional cell model with a microstructure surrogate model approach to acquire a better understanding of the effect of the cathode microstructure on the internal process limitations. This model is incorporated into a global optimisation algorithm to predict optimum battery size with respect to the dynamic load demand of eVTOL. When carbon black and active materials are premixed, the battery performs better than when solid electrolyte and active materials are premixed, particularly for low amounts of carbon black in the cathode combination, i.e., 5%. Further, results indicate that future electrification of transportation powertrains would necessitate optimising the composition and distribution of electrode components to fulfil the high demands for power and energy density. By enhancing transport through the microstructure and improving the material’s intrinsic conductivity, it is possible to significantly increase the effective diffusivity and conductivity of ASSB, and hence the mission range.
ISSN:0013-4651
1945-7111
DOI:10.1149/1945-7111/ad00de