(Plenary) Challenges in Going from Laboratory to Megawatt Scale PEM Electrolysis

Renewable hydrogen is becoming an increasingly important component of the transition away from fossil fuel use and towards reduction in carbon dioxide production. Hydrogen is the intermediary between primary energy sources and end products in many chemical processes such as ammonia generation, refin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ECS transactions 2016-01, Vol.75 (14), p.395-402
Hauptverfasser: Danilovic, Nemanja, Ayers, Katherine E, Capuano, Christopher, Renner, Julie N, Wiles, Luke, Pertoso, Morgan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Renewable hydrogen is becoming an increasingly important component of the transition away from fossil fuel use and towards reduction in carbon dioxide production. Hydrogen is the intermediary between primary energy sources and end products in many chemical processes such as ammonia generation, refining, and biogas processing, and is currently mainly produced by reforming of natural gas. Hydrogen from electrolysis can both make a strong environmental impact on these industries and also improve utilization of intermittent renewable energy sources such as wind and solar by leveraging otherwise stranded resources. Proton exchange membrane (PEM) electrolysis is especially well suited to energy capture because of the dynamic range and ability to quickly ramp up and down from near zero output to full capacity. This paper will discuss the challenges in continued scale up, translating laboratory scale findings to commercial PEM systems as well as some of recent advancements and impact on cost.
ISSN:1938-5862
1938-6737
DOI:10.1149/07514.0395ecst