Effect of Pretreatment on the Rate of the VO2+/VO2+ and V2+/V3+ Reactions at a Carbon Electrode

It was shown by cyclic voltammetry, current measurements at constant potential and electrochemical impedance spectroscopy that polarization pretreatment of glassy carbon electrodes affects the kinetics of the VO2+/VO2+ and V2+/V3+ redox reactions. After pretreatment at potentials more positive than...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ECS transactions 2014-09, Vol.61 (37), p.15-26
Hauptverfasser: Bourke, Andrea, Quill, Nathan, Lynch, Robert P., Buckley, D. Noel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It was shown by cyclic voltammetry, current measurements at constant potential and electrochemical impedance spectroscopy that polarization pretreatment of glassy carbon electrodes affects the kinetics of the VO2+/VO2+ and V2+/V3+ redox reactions. After pretreatment at potentials more positive than ~0.7 V (sat. Hg/Hg2SO4), electrodes were less active both for oxidation of VO2+ and for reduction of VO2+. The activity of the electrode remained depressed indefinitely but was recovered by pretreatment at negative potentials. However, the converse was observed for the V2+/V3+ redox reactions: after pretreatment at positive potentials electrodes were more active for oxidation of V2+ and reduction of V3+ than after pretreatment at negative potentials. Both activation and deactivation (for VO2+/VO2+) occurred relatively quickly, typically within ~60 s. and eventually approached a steady state characteristic of the particular pretreatment potential. It is suggested that oxygen species formed on the electrode during anodization inhibit the VO2+/VO2+ electrode reaction but enhance the V2+/V3+ electrode reaction.
ISSN:1938-5862
1938-6737
DOI:10.1149/06137.0015ecst