Engineering the Abio-Bio Interface to Enable More than Moore in Functional Bioelectronics

The need for biocompatible, low impedance abio-to-bio interfaces suitable for implantable bioactive devices has led us to develop electroconductive hydrogels. Conductive electroactive polymers (CEPs) are one dimensional organic semiconductors synthesized from aromatic monomers into extended pi-conju...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ECS transactions 2013-03, Vol.50 (14), p.13-29
Hauptverfasser: Guiseppi-Elie, Anthony, Kotanen, Christian, Karunwi, Olukayode, Wilson, A. Nolan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The need for biocompatible, low impedance abio-to-bio interfaces suitable for implantable bioactive devices has led us to develop electroconductive hydrogels. Conductive electroactive polymers (CEPs) are one dimensional organic semiconductors synthesized from aromatic monomers into extended pi-conjugated polymers. The synthesis of CEPs in association with hydrogels produces class of hybrid materials with the conductivity of the CEP and inherent biocompatibility of the hydrogel. CEPs provide a means for the additive electrodeposition of biorecognition molecules to specific nano- and micron-dimensioned metallic and semiconducting sites on microfabricated metallic or semiconductor MEMS devices. Through judicious engineering of repeat unit chemistry, polymer architecture, crosslink density and microstructure, the mechanical, transport and surface properties may be controlled. Implanted, these materials enable programmed low voltage electro-release of factors suitable for mitigating inflammatory response. Finally, these hydrogels can accommodate supramolecular assemblies of CNTs and enzymes supporting direct electron transfer for generation-3 biosensors and implantable biofuel cells.
ISSN:1938-5862
1938-6737
DOI:10.1149/05014.0013ecst