Set-conditional set generation for particle physics

The simulation of particle physics data is a fundamental but computationally intensive ingredient for physics analysis at the large Hadron collider, where observational set-valued data is generated conditional on a set of incoming particles. To accelerate this task, we present a novel generative mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning: science and technology 2023-12, Vol.4 (4), p.45036
Hauptverfasser: Soybelman, Nathalie, Kakati, Nilotpal, Heinrich, Lukas, Di Bello, Francesco Armando, Dreyer, Etienne, Ganguly, Sanmay, Gross, Eilam, Kado, Marumi, Shlomi, Jonathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 45036
container_title Machine learning: science and technology
container_volume 4
creator Soybelman, Nathalie
Kakati, Nilotpal
Heinrich, Lukas
Di Bello, Francesco Armando
Dreyer, Etienne
Ganguly, Sanmay
Gross, Eilam
Kado, Marumi
Shlomi, Jonathan
description The simulation of particle physics data is a fundamental but computationally intensive ingredient for physics analysis at the large Hadron collider, where observational set-valued data is generated conditional on a set of incoming particles. To accelerate this task, we present a novel generative model based on a graph neural network and slot-attention components, which exceeds the performance of pre-existing baselines.
doi_str_mv 10.1088/2632-2153/ad035b
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_2632_2153_ad035b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d10a6430beb64bd2b3a183547d0c0963</doaj_id><sourcerecordid>2893438786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-48c7a02480ce639f3db6a52b3078d76ed2eaa3fe6c64137eaf1e7d00265390f3</originalsourceid><addsrcrecordid>eNp9kL1PwzAQxSMEElXpzhiJgYXQs89xnBFVfFSqxEB3y7Gdkiqtgx2G_vc4pCoMCHmw9fTud88vSa4J3BMQYk450oySHOfKAObVWTI5See_3pfJLIQtANCcYE5hkuCb7TPt9qbpG7dXbRpsn27s3no1CGntfNop3ze6tWn3fgiNDlfJRa3aYGfHe5qsnx7Xi5ds9fq8XDysMs2A9BkTulBAmQBtOZY1moqrnFYIhTAFt4ZapbC2XHNGsLCqJrYwMRvPsYQap8lyxBqntrLzzU75g3Sqkd-C8xt5DCYNAcUZQmUrzioTdygiMGcRp6HkGFk3I6vz7uPThl5u3aeP_w2SihIZikLw6ILRpb0Lwdv6tJWAHIqWQ5NyaFKORceRu3Gkcd0P8x_77R_2XRsDsXiA5YBcdqbGL32AigU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893438786</pqid></control><display><type>article</type><title>Set-conditional set generation for particle physics</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Soybelman, Nathalie ; Kakati, Nilotpal ; Heinrich, Lukas ; Di Bello, Francesco Armando ; Dreyer, Etienne ; Ganguly, Sanmay ; Gross, Eilam ; Kado, Marumi ; Shlomi, Jonathan</creator><creatorcontrib>Soybelman, Nathalie ; Kakati, Nilotpal ; Heinrich, Lukas ; Di Bello, Francesco Armando ; Dreyer, Etienne ; Ganguly, Sanmay ; Gross, Eilam ; Kado, Marumi ; Shlomi, Jonathan</creatorcontrib><description>The simulation of particle physics data is a fundamental but computationally intensive ingredient for physics analysis at the large Hadron collider, where observational set-valued data is generated conditional on a set of incoming particles. To accelerate this task, we present a novel generative model based on a graph neural network and slot-attention components, which exceeds the performance of pre-existing baselines.</description><identifier>ISSN: 2632-2153</identifier><identifier>EISSN: 2632-2153</identifier><identifier>DOI: 10.1088/2632-2153/ad035b</identifier><identifier>CODEN: MLSTCK</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>conditional generation ; fast simulation ; graph networks ; Graph neural networks ; Large Hadron Collider ; Particle physics ; slot-attention ; transformer</subject><ispartof>Machine learning: science and technology, 2023-12, Vol.4 (4), p.45036</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd</rights><rights>2023 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c401t-48c7a02480ce639f3db6a52b3078d76ed2eaa3fe6c64137eaf1e7d00265390f3</cites><orcidid>0000-0003-1285-9261 ; 0000-0003-2155-1859 ; 0000-0002-9870-2021 ; 0000-0002-1003-7638 ; 0000-0003-0209-0858 ; 0000-0002-4048-7584 ; 0000-0001-8955-9510 ; 0000-0003-1244-9350 ; 0000-0002-2628-3470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2632-2153/ad035b/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2096,27901,27902,38867,53842</link.rule.ids></links><search><creatorcontrib>Soybelman, Nathalie</creatorcontrib><creatorcontrib>Kakati, Nilotpal</creatorcontrib><creatorcontrib>Heinrich, Lukas</creatorcontrib><creatorcontrib>Di Bello, Francesco Armando</creatorcontrib><creatorcontrib>Dreyer, Etienne</creatorcontrib><creatorcontrib>Ganguly, Sanmay</creatorcontrib><creatorcontrib>Gross, Eilam</creatorcontrib><creatorcontrib>Kado, Marumi</creatorcontrib><creatorcontrib>Shlomi, Jonathan</creatorcontrib><title>Set-conditional set generation for particle physics</title><title>Machine learning: science and technology</title><addtitle>MLST</addtitle><addtitle>Mach. Learn.: Sci. Technol</addtitle><description>The simulation of particle physics data is a fundamental but computationally intensive ingredient for physics analysis at the large Hadron collider, where observational set-valued data is generated conditional on a set of incoming particles. To accelerate this task, we present a novel generative model based on a graph neural network and slot-attention components, which exceeds the performance of pre-existing baselines.</description><subject>conditional generation</subject><subject>fast simulation</subject><subject>graph networks</subject><subject>Graph neural networks</subject><subject>Large Hadron Collider</subject><subject>Particle physics</subject><subject>slot-attention</subject><subject>transformer</subject><issn>2632-2153</issn><issn>2632-2153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9kL1PwzAQxSMEElXpzhiJgYXQs89xnBFVfFSqxEB3y7Gdkiqtgx2G_vc4pCoMCHmw9fTud88vSa4J3BMQYk450oySHOfKAObVWTI5See_3pfJLIQtANCcYE5hkuCb7TPt9qbpG7dXbRpsn27s3no1CGntfNop3ze6tWn3fgiNDlfJRa3aYGfHe5qsnx7Xi5ds9fq8XDysMs2A9BkTulBAmQBtOZY1moqrnFYIhTAFt4ZapbC2XHNGsLCqJrYwMRvPsYQap8lyxBqntrLzzU75g3Sqkd-C8xt5DCYNAcUZQmUrzioTdygiMGcRp6HkGFk3I6vz7uPThl5u3aeP_w2SihIZikLw6ILRpb0Lwdv6tJWAHIqWQ5NyaFKORceRu3Gkcd0P8x_77R_2XRsDsXiA5YBcdqbGL32AigU</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Soybelman, Nathalie</creator><creator>Kakati, Nilotpal</creator><creator>Heinrich, Lukas</creator><creator>Di Bello, Francesco Armando</creator><creator>Dreyer, Etienne</creator><creator>Ganguly, Sanmay</creator><creator>Gross, Eilam</creator><creator>Kado, Marumi</creator><creator>Shlomi, Jonathan</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2P</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1285-9261</orcidid><orcidid>https://orcid.org/0000-0003-2155-1859</orcidid><orcidid>https://orcid.org/0000-0002-9870-2021</orcidid><orcidid>https://orcid.org/0000-0002-1003-7638</orcidid><orcidid>https://orcid.org/0000-0003-0209-0858</orcidid><orcidid>https://orcid.org/0000-0002-4048-7584</orcidid><orcidid>https://orcid.org/0000-0001-8955-9510</orcidid><orcidid>https://orcid.org/0000-0003-1244-9350</orcidid><orcidid>https://orcid.org/0000-0002-2628-3470</orcidid></search><sort><creationdate>20231201</creationdate><title>Set-conditional set generation for particle physics</title><author>Soybelman, Nathalie ; Kakati, Nilotpal ; Heinrich, Lukas ; Di Bello, Francesco Armando ; Dreyer, Etienne ; Ganguly, Sanmay ; Gross, Eilam ; Kado, Marumi ; Shlomi, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-48c7a02480ce639f3db6a52b3078d76ed2eaa3fe6c64137eaf1e7d00265390f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>conditional generation</topic><topic>fast simulation</topic><topic>graph networks</topic><topic>Graph neural networks</topic><topic>Large Hadron Collider</topic><topic>Particle physics</topic><topic>slot-attention</topic><topic>transformer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soybelman, Nathalie</creatorcontrib><creatorcontrib>Kakati, Nilotpal</creatorcontrib><creatorcontrib>Heinrich, Lukas</creatorcontrib><creatorcontrib>Di Bello, Francesco Armando</creatorcontrib><creatorcontrib>Dreyer, Etienne</creatorcontrib><creatorcontrib>Ganguly, Sanmay</creatorcontrib><creatorcontrib>Gross, Eilam</creatorcontrib><creatorcontrib>Kado, Marumi</creatorcontrib><creatorcontrib>Shlomi, Jonathan</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Machine learning: science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soybelman, Nathalie</au><au>Kakati, Nilotpal</au><au>Heinrich, Lukas</au><au>Di Bello, Francesco Armando</au><au>Dreyer, Etienne</au><au>Ganguly, Sanmay</au><au>Gross, Eilam</au><au>Kado, Marumi</au><au>Shlomi, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Set-conditional set generation for particle physics</atitle><jtitle>Machine learning: science and technology</jtitle><stitle>MLST</stitle><addtitle>Mach. Learn.: Sci. Technol</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>4</volume><issue>4</issue><spage>45036</spage><pages>45036-</pages><issn>2632-2153</issn><eissn>2632-2153</eissn><coden>MLSTCK</coden><abstract>The simulation of particle physics data is a fundamental but computationally intensive ingredient for physics analysis at the large Hadron collider, where observational set-valued data is generated conditional on a set of incoming particles. To accelerate this task, we present a novel generative model based on a graph neural network and slot-attention components, which exceeds the performance of pre-existing baselines.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2632-2153/ad035b</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1285-9261</orcidid><orcidid>https://orcid.org/0000-0003-2155-1859</orcidid><orcidid>https://orcid.org/0000-0002-9870-2021</orcidid><orcidid>https://orcid.org/0000-0002-1003-7638</orcidid><orcidid>https://orcid.org/0000-0003-0209-0858</orcidid><orcidid>https://orcid.org/0000-0002-4048-7584</orcidid><orcidid>https://orcid.org/0000-0001-8955-9510</orcidid><orcidid>https://orcid.org/0000-0003-1244-9350</orcidid><orcidid>https://orcid.org/0000-0002-2628-3470</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2632-2153
ispartof Machine learning: science and technology, 2023-12, Vol.4 (4), p.45036
issn 2632-2153
2632-2153
language eng
recordid cdi_iop_journals_10_1088_2632_2153_ad035b
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects conditional generation
fast simulation
graph networks
Graph neural networks
Large Hadron Collider
Particle physics
slot-attention
transformer
title Set-conditional set generation for particle physics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A44%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Set-conditional%20set%20generation%20for%20particle%20physics&rft.jtitle=Machine%20learning:%20science%20and%20technology&rft.au=Soybelman,%20Nathalie&rft.date=2023-12-01&rft.volume=4&rft.issue=4&rft.spage=45036&rft.pages=45036-&rft.issn=2632-2153&rft.eissn=2632-2153&rft.coden=MLSTCK&rft_id=info:doi/10.1088/2632-2153/ad035b&rft_dat=%3Cproquest_iop_j%3E2893438786%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2893438786&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_d10a6430beb64bd2b3a183547d0c0963&rfr_iscdi=true