Set-conditional set generation for particle physics

The simulation of particle physics data is a fundamental but computationally intensive ingredient for physics analysis at the large Hadron collider, where observational set-valued data is generated conditional on a set of incoming particles. To accelerate this task, we present a novel generative mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning: science and technology 2023-12, Vol.4 (4), p.45036
Hauptverfasser: Soybelman, Nathalie, Kakati, Nilotpal, Heinrich, Lukas, Di Bello, Francesco Armando, Dreyer, Etienne, Ganguly, Sanmay, Gross, Eilam, Kado, Marumi, Shlomi, Jonathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The simulation of particle physics data is a fundamental but computationally intensive ingredient for physics analysis at the large Hadron collider, where observational set-valued data is generated conditional on a set of incoming particles. To accelerate this task, we present a novel generative model based on a graph neural network and slot-attention components, which exceeds the performance of pre-existing baselines.
ISSN:2632-2153
2632-2153
DOI:10.1088/2632-2153/ad035b