Set-conditional set generation for particle physics
The simulation of particle physics data is a fundamental but computationally intensive ingredient for physics analysis at the large Hadron collider, where observational set-valued data is generated conditional on a set of incoming particles. To accelerate this task, we present a novel generative mod...
Gespeichert in:
Veröffentlicht in: | Machine learning: science and technology 2023-12, Vol.4 (4), p.45036 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The simulation of particle physics data is a fundamental but computationally intensive ingredient for physics analysis at the large Hadron collider, where observational set-valued data is generated conditional on a set of incoming particles. To accelerate this task, we present a novel generative model based on a graph neural network and slot-attention components, which exceeds the performance of pre-existing baselines. |
---|---|
ISSN: | 2632-2153 2632-2153 |
DOI: | 10.1088/2632-2153/ad035b |