Graph constrained empirical wavelet transform and its application in bearing fault diagnosis

The signal decomposition based on frequency domain distribution is a fundamental methodology for mechanical component fault diagnosis. However, existing methods face challenges such as susceptibility to noise interference and limited adaptability. Therefore, this paper proposes the graph constrained...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering Research Express 2024-09, Vol.6 (3), p.35516
Hauptverfasser: Tan, Yuan, Zhao, Shui, Lv, Xiaorong, Shao, Shifen, Chen, Bingyan, Fan, Xiyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The signal decomposition based on frequency domain distribution is a fundamental methodology for mechanical component fault diagnosis. However, existing methods face challenges such as susceptibility to noise interference and limited adaptability. Therefore, this paper proposes the graph constrained empirical wavelet transform (GCEWT) method. This method introduces structured information, such as the interrelationships among different parts of the frequency domain distribution of vibration signals, into the boundary detection process of empirical wavelet transform. The high-dimensional connectivity among different parts of the time-frequency distribution is utilized to construct an adjacency matrix. By constructing an adjacent graph, the proposed method encodes the adjacency relationships among frequency bands to constrain the low-dimensional spatial relationships between them. In conjunction with spectral clustering algorithms, the GCEWT method determines the boundaries for empirical wavelet transformation in the frequency domain. This approach achieves structured and adaptive decomposition of vibration signals from components of critical equipment, facilitating the structured and adaptive extraction of fault features. The effectiveness of the proposed method is validated using vibration data from both wind turbine drivetrain systems and aircraft engines. The experimental results demonstrate that the proposed method yields more reasonable signal decomposition results compared to traditional algorithms. Additionally, the proposed method proves to be more effective in extracting weak fault features of bearings in the presence of noise.
ISSN:2631-8695
2631-8695
DOI:10.1088/2631-8695/ad612e