Contact engineering for organic CMOS circuits

Organic field-effect transistors (OFETs) have been widely studied, but there are still challenges to achieving large-scale integration in organic complementary metal–oxide–semiconductor (CMOS) circuits. In this article, we discuss the issues on organic CMOS circuits from a device perspective. Our di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JPhys materials 2024-01, Vol.7 (1), p.12002
Hauptverfasser: Chen, Quanhua, Cao, Jiarong, Liu, Yuan, Zhu, Rujun, Cao, Jinxiu, Liu, Zhao, Zhao, Xing, Wu, Jianfei, Yang, Guangan, Zhu, Li, Wu, Jie, Yu, Zhihao, Sun, Huabin, Li, Run, Xue, Shujian, Li, Binhong, Tan, Chee Leong, Xu, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Organic field-effect transistors (OFETs) have been widely studied, but there are still challenges to achieving large-scale integration in organic complementary metal–oxide–semiconductor (CMOS) circuits. In this article, we discuss the issues on organic CMOS circuits from a device perspective. Our discussion begins with a systematic analysis of the principal parameters of the building block, a CMOS inverter, including gain, noise margin, and power dissipation, as well as the relevant challenges and the potential solutions. We then review state-of-the-art organic CMOS inverters and their fabrications. Finally, we focus on the approaches to optimize organic CMOS circuits from a specific point of view of the contact engineering, particularly for N-type OFETs.
ISSN:2515-7639
2515-7639
DOI:10.1088/2515-7639/ad097e