Beyond quantum annealing: optimal control solutions to maxcut problems

Quantum Annealing (QA) relies on mixing two Hamiltonian terms, a simple driver and a complex problem Hamiltonian, in a linear combination. The time-dependent schedule for this mixing is often taken to be linear in time: improving on this linear choice is known to be essential and has proven to be di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum science and technology 2024-10, Vol.9 (4), p.45013
Hauptverfasser: Pecci, Giovanni, Wang, Ruiyi, Torta, Pietro, Mbeng, Glen Bigan, Santoro, Giuseppe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum Annealing (QA) relies on mixing two Hamiltonian terms, a simple driver and a complex problem Hamiltonian, in a linear combination. The time-dependent schedule for this mixing is often taken to be linear in time: improving on this linear choice is known to be essential and has proven to be difficult. Here, we present different techniques for improving on the linear-schedule QA along two directions, conceptually distinct but leading to similar outcomes: 1) the first approach consists of constructing a Trotter-digitized QA (dQA) with schedules parameterized in terms of Fourier modes or Chebyshev polynomials, inspired by the Chopped Random Basis algorithm for optimal control in continuous time; 2) the second approach is technically a Quantum Approximate Optimization Algorithm (QAOA), whose solutions are found iteratively using linear interpolation or expansion in Fourier modes. Both approaches emphasize finding smooth optimal schedule parameters, ultimately leading to hybrid quantum–classical variational algorithms of the alternating Hamiltonian Ansatz type. We apply these techniques to MaxCut problems on weighted 3-regular graphs with N = 14 sites, focusing on hard instances that exhibit a small spectral gap, for which a standard linear-schedule QA performs poorly. We characterize the physics behind the optimal protocols for both the dQA and QAOA approaches, discovering shortcuts to adiabaticity -like dynamics. Furthermore, we study the transferability of such smooth solutions among hard instances of MaxCut at different circuit depths. Finally, we show that the smoothness pattern of these protocols obtained in a digital setting enables us to adapt them to continuous-time evolution, contrarily to generic non-smooth solutions. This procedure results in an optimized QA schedule that is implementable on analog devices.
ISSN:2058-9565
2058-9565
DOI:10.1088/2058-9565/ad60f2