Second-order decoherence mechanisms of a transmon qubit probed with thermal microwave states

Thermal microwave states are omnipresent noise sources in superconducting quantum circuits covering all relevant frequency regimes. We use them as a probe to identify three second-order decoherence mechanisms of a superconducting transmon qubit. First, we quantify the efficiency of a resonator filte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum science and technology 2017-06, Vol.2 (2), p.25002
Hauptverfasser: Goetz, J, Deppe, F, Eder, P, Fischer, M, Müting, M, Martínez, J Puertas, Pogorzalek, S, Wulschner, F, Xie, E, Fedorov, K G, Marx, A, Gross, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thermal microwave states are omnipresent noise sources in superconducting quantum circuits covering all relevant frequency regimes. We use them as a probe to identify three second-order decoherence mechanisms of a superconducting transmon qubit. First, we quantify the efficiency of a resonator filter in the dispersive Jaynes-Cummings regime and find evidence for parasitic loss channels. Second, we probe second-order noise in the low-frequency regime and demonstrate the expected T3 temperature dependence of the qubit dephasing rate. Finally, we show that qubit parameter fluctuations due to two-level states are enhanced under the influence of thermal microwave states. In particular, we experimentally confirm the T2-dependence of the fluctuation spectrum expected for noninteracting two-level states.
ISSN:2058-9565
2058-9565
DOI:10.1088/2058-9565/aa66e7