Hydrogen cold plasma for synthesizing Pd/C catalysts: the effect of support-metal ion interaction
It has been found that cold plasma is a facile and environmentally benign method for synthesizing supported metal catalysts, and great efforts have been devoted to enlarging its applications. However, little work has been done to disclose the influence mechanism, which is significant for controllabl...
Gespeichert in:
Veröffentlicht in: | Plasma science & technology 2018-01, Vol.20 (1), p.108-113 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It has been found that cold plasma is a facile and environmentally benign method for synthesizing supported metal catalysts, and great efforts have been devoted to enlarging its applications. However, little work has been done to disclose the influence mechanism, which is significant for controllable synthesis. In this work, hydrogen cold plasma was adopted to synthesize a palladium catalyst supported on activated carbon (Pd/C-P) using HzPdC14 as a Pd precursor followed by calcination in hydrogen gas to remove the chlorine ions. The Pd/C-P catalyst was found to be made of larger Pd nanoparticles showing a decreased migration to the support outer surface than that prepared by the conventional thermal hydrogen reduction method (Pd/C-C). Meanwhile, the pore diameter of the activated carbon support is small (,-~4 nm). Therefore, Pd/C-P exhibits lower CO oxidation activity than Pd/C-C. It was proposed that the strong interaction between the activated carbon and PdC142-, and the enhanced metal-support interaction caused by hydrogen cold plasma reduction made it difficult for Pd nanoparticles to migrate to the support outer surface. The larger-sized Pd nanoparticles for Pd/C-P may be due to the Coulomb interaction resulting in the disturbance of the metal-support interaction. This work has important guiding significance for the controllable synthesis of supported metal catalysts by hydrogen cold plasma. |
---|---|
ISSN: | 1009-0630 1009-0630 |
DOI: | 10.1088/2058-6272/aa7f27 |