Experimental investigation of lift enhancement for flying wing aircraft using nanosecond DBD plasma actuators

he effects of the arrangement position and control parameters of nanosecond dielectric barrier discharge (NS-DBD) plasma actuators on lift enhancement for flying wing aircraft were investigated through wind tunnel experiments at a flow speed of 25 m s-1.The aerodynamic forces and moments were obtain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasma science & technology 2017-04, Vol.19 (4), p.7-14
1. Verfasser: 姚军锴 周丹杰 何海波 何承军 史志伟 杜海
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:he effects of the arrangement position and control parameters of nanosecond dielectric barrier discharge (NS-DBD) plasma actuators on lift enhancement for flying wing aircraft were investigated through wind tunnel experiments at a flow speed of 25 m s-1.The aerodynamic forces and moments were obtained by a six-component balance at angles of attack ranging from -4° to 28°.The lift,drag and pitching moment coefficients were compared for the cases with and without plasma control.The results revealed that the maximum control effect was achieved by placing the actuator at the leading edge of the inner and middle wing,for which the maximum lift coefficient increased by 37.8% and the stall angle of attack was postponed by 8° compared with the plasma-off case.The effects of modulation frequency and discharge voltage were also investigated.The results revealed that the lift enhancement effect of the NS-DBD plasma actuators was strongly influenced by the modulation frequency.Significant control effects were obtained atf =70 Hz,corresponding to F+ ≈ 1.The result for the pitching moment coefficient demonstrated that the plasma actuator can induce the reattachment of the separation flows when it is actuated.However,the results indicated that the discharge voltage had a negligible influence on the lift enhancement effect.
ISSN:1009-0630
1009-0630
DOI:10.1088/2058-6272/aa57f1