WS2/BSe van der Waals type-II heterostructure as a promising water splitting photocatalyst

The structure, electronic properties, charge transfer, band edge alignments and optical properties of WS2/BSe heterostructures are investigated by using first-principle calculations. Results imply that WS2/BSe heterostructures are semiconductor with an indirect energy gap (Egap) of 1.73 eV. Addition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials research express 2019-03, Vol.6 (3)
Hauptverfasser: Zhang, Dingbo, Zhou, Zhongpo, Hu, Yue, Yang, Zongxian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The structure, electronic properties, charge transfer, band edge alignments and optical properties of WS2/BSe heterostructures are investigated by using first-principle calculations. Results imply that WS2/BSe heterostructures are semiconductor with an indirect energy gap (Egap) of 1.73 eV. Additionally, it has a feature of type-II band alignment, which contributes to spatial separation of photo-generated electron-hole pairs in WS2/BSe heterostructures. Charge transfer takes place from BSe to WS2 monolayers, which extends lifetime of the separated photo-induced charge carriers. Most importantly, band edges of the heterostructure are found to meet hydrogen evolution reaction (HER) in acid solutions (0 < pH < 7). Moreover, compared with only one for WS2 and BSe monolayers, the optical-absorption strength of the heterostructure is significantly enhanced and WS2/BSe heterostructures larges the range of absorption to 717 nm in the visible light region, improving the potential photocatalytic efficiency. These results explain the underlying mechanism of the enhanced photocatalytic activity of WS2/BSe heterostructures. Thus WS2/BSe heterostructures can be applied to 2D heterostructured photocatalysts.
ISSN:2053-1591
DOI:10.1088/2053-1591/aaf7c3