Theory of the thickness dependence of the charge density wave transition in 1 T-TiTe2

Most metallic transition metal dichalcogenides undergo charge density wave (CDW) instabilities with similar or identical ordering vectors in bulk and in single layer, albeit with different critical temperatures. Metallic 1 T-TiTe2 is a remarkable exception as it shows no evidence of charge density w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2d materials 2020-10, Vol.7 (4)
Hauptverfasser: Sky Zhou, Jianqiang, Bianco, Raffaello, Monacelli, Lorenzo, Errea, Ion, Mauri, Francesco, Calandra, Matteo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most metallic transition metal dichalcogenides undergo charge density wave (CDW) instabilities with similar or identical ordering vectors in bulk and in single layer, albeit with different critical temperatures. Metallic 1 T-TiTe2 is a remarkable exception as it shows no evidence of charge density wave formation in bulk, but it displays a stable 2 × 2 reconstruction in single-layer form. The mechanism for this 3D-2D crossover of the transition is still unclear, although strain from the substrate and the exchange interaction have been pointed out as possible formation mechanisms. Here, by performing non-perturbative anharmonic calculations with gradient corrected and hybrid functionals, we explain the thickness behaviour of the transition in 1 T-TiTe. We demonstrate that the CDW in single-layer TiTe2 occurs from the interplay of non-perturbative anharmonicity and an exchange enhancement of the electron-phonon interaction, larger in the single layer than in the bulk. Finally, we study the electronic and structural properties of the single-layer CDW phase and provide a complete description of its electronic structure, phonon dispersion as well as infrared and Raman active phonon modes.
ISSN:2053-1583
DOI:10.1088/2053-1583/abae7a