White-light hyperbolic Airy beams

Airy beams have gained attention due to their exotic properties of seemingly bending around obstacles, self-healing and being resistant to diffraction. Regular Airy beams are often generated by imposing cubic spatial phase on a Gaussian beam and Fourier transforming the resulting field with a lens....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optics (2010) 2018-09, Vol.20 (9), p.95605
Hauptverfasser: Valdmann, Andreas, Piksarv, Peeter, Valtna-Lukner, Heli, Saari, Peeter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Airy beams have gained attention due to their exotic properties of seemingly bending around obstacles, self-healing and being resistant to diffraction. Regular Airy beams are often generated by imposing cubic spatial phase on a Gaussian beam and Fourier transforming the resulting field with a lens. In this paper, we analyze the so-called hyperbolic Airy (HA) beams that are formed behind the cubic phase element, i.e. with no Fourier lens in the setup. We use an ultra-broadband supercontinuum laser source in combination with transmissive (refractive) and reflective cubic phase elements to create white-light HA beams. The resulting beams are sampled with a SEA TADPOLE spatial-spectral interferometer to record the hyperspectral beam profile and reconstruct a three-dimensional spatio-temporal impulse response of the cubic phase elements. We show that nondispersing beams are produced in reflective geometry, while the main lobe of the HA beam created with a refractive phase element suffered from lateral dispersion.
ISSN:2040-8978
2040-8986
DOI:10.1088/2040-8986/aad700