Algebraic discrete quantum harmonic oscillator with dynamic resolution scaling
We develop an algebraic formulation for the discrete quantum harmonic oscillator (DQHO) from the Hamiltonian for two, coupled QHOs and provide a physical picture for the Kravchuk function eigenstates of the oscillator. The familiar su ( 2 ) structure of the coupled QHO Hamiltonian divides its spectr...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2024-11, Vol.57 (41), p.415304 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop an algebraic formulation for the discrete quantum harmonic oscillator (DQHO) from the Hamiltonian for two, coupled QHOs and provide a physical picture for the Kravchuk function eigenstates of the oscillator. The familiar su ( 2 ) structure of the coupled QHO Hamiltonian divides its spectrum into sets corresponding to the DQHO at different resolutions. In addition to energy ladder operators, the formulation allows for the introduction of resolution ladder operators connecting all DQHOs with different resolutions, thus enabling the dynamic scaling of the resolution of finite degree-of-freedom quantum simulations. The coherent state of the DQHO is constructed, and its expected position is proven to oscillate as a classical harmonic oscillator. The DQHO coherent state recovers that of the quantum harmonic oscillator at large resolution. |
---|---|
ISSN: | 1751-8113 1751-8121 |
DOI: | 10.1088/1751-8121/ad7ae5 |