Joint moments of derivatives of characteristic polynomials of random symplectic and orthogonal matrices

We investigate the joint moments of derivatives of characteristic polynomials over the unitary symplectic group S p ( 2 N ) and the orthogonal ensembles S O ( 2 N ) and O − ( 2 N ) . We prove asymptotic formulae for the joint moments of the n 1 th and n 2 th derivatives of the characteristic polynom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2024-05, Vol.57 (20), p.205205
Hauptverfasser: Andrade, Julio C, Best, Christopher G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the joint moments of derivatives of characteristic polynomials over the unitary symplectic group S p ( 2 N ) and the orthogonal ensembles S O ( 2 N ) and O − ( 2 N ) . We prove asymptotic formulae for the joint moments of the n 1 th and n 2 th derivatives of the characteristic polynomials for all three matrix ensembles. Our results give two explicit formulae for each of the leading order coefficients, one in terms of determinants of hypergeometric functions and the other as combinatorial sums over partitions. We use our results to put forward conjectures on the joint moments of derivatives of L -functions with symplectic and orthogonal symmetry.
ISSN:1751-8113
1751-8121
DOI:10.1088/1751-8121/ad4075