q-analog qudit Dicke states
Dicke states are completely symmetric states of multiple qubits (2-level systems), and qudit Dicke states are their d -level generalization. We define here q -deformed qudit Dicke states using the quantum algebra s u q ( d ) . We show that these states can be compactly expressed as a weighted sum ov...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2024-02, Vol.57 (6), p.65302 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dicke states are completely symmetric states of multiple qubits (2-level systems), and qudit Dicke states are their
d
-level generalization. We define here
q
-deformed qudit Dicke states using the quantum algebra
s
u
q
(
d
)
. We show that these states can be compactly expressed as a weighted sum over permutations with
q
-factors involving the so-called inversion number, an important permutation statistic in Combinatorics. We use this result to compute the bipartite entanglement entropy of these states. We also discuss the preparation of these states on a quantum computer, and show that introducing a
q
-dependence does not change the circuit gate count. |
---|---|
ISSN: | 1751-8113 1751-8121 |
DOI: | 10.1088/1751-8121/ad1ea4 |