Systematic investigations on ion dynamics with noises in Paul trap

Ions confined in a Paul trap serve as crucial platforms in various research fields, including quantum computing and precision spectroscopy. However, the ion dynamics is inevitably influenced by different types of noise, which require accurate computations and general analytical analysis to facilitat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2023-11, Vol.56 (46), p.465302
Hauptverfasser: Wang, Ying-Xiang, Liu, Sheng-Chen, Cheng, Lin, Peng, Liang-You
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ions confined in a Paul trap serve as crucial platforms in various research fields, including quantum computing and precision spectroscopy. However, the ion dynamics is inevitably influenced by different types of noise, which require accurate computations and general analytical analysis to facilitate diverse applications based on trapped ions with white or colored noise. In the present work, we investigate the motion of ions in a Paul trap via the Langevin equation using both analytical and numerical methods, systematically studying three different types of noise: the white noise, the colored noise via the Ornstein–Uhlenbeck process and the Wiener process. For the white noise of the case, we provide a recursion method to calculate ion motion for a wide range of parameters. Furthermore, we present an analytical solution to the more realistic stochastic process associated with the colored noise, verified by the Monte Carlo simulation. By comparing the results of the colored noise with those of the white noise, and additionally considering another limit of noise parameters corresponding to the Wiener process, we summarize the effects of different noise types on the ion dynamics.
ISSN:1751-8113
1751-8121
DOI:10.1088/1751-8121/ad0348