Geometric aspects of the ODE/IM correspondence Partially based on lectures given at the 'Young Researchers Integrability School 2017', in Dublin

This review describes a link between Lax operators, embedded surfaces and thermodynamic Bethe ansatz equations for integrable quantum field theories. This surprising connection between classical and quantum models is undoubtedly one of the most striking discoveries that emerged from the off-critical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2020-05, Vol.53 (22)
Hauptverfasser: Dorey, Patrick, Dunning, Clare, Negro, Stefano, Tateo, Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This review describes a link between Lax operators, embedded surfaces and thermodynamic Bethe ansatz equations for integrable quantum field theories. This surprising connection between classical and quantum models is undoubtedly one of the most striking discoveries that emerged from the off-critical generalisation of the ODE/IM correspondence, which initially involved only conformal invariant quantum field theories. We will mainly focus of the KdV and sinh-Gordon models. However, various aspects of other interesting systems, such as affine Toda field theories and non-linear sigma models, will be mentioned. We also discuss the implications of these ideas in the AdS/CFT context, involving minimal surfaces and Wilson loops. This work is a follow-up of the ODE/IM review published more than ten years ago by J. Phys. A: Math. Theor., before the discovery of its off-critical generalisation and the corresponding geometrical interpretation.
ISSN:1751-8113
1751-8121
DOI:10.1088/1751-8121/ab83c9