Transfer-matrix formulation of the scattering of electromagnetic waves and broadband invisibility in three dimensions
We develop a transfer-matrix formulation of the scattering of electromagnetic waves by a general isotropic medium which makes use of a notion of electromagnetic transfer matrix that does not involve slicing of the scattering medium or discretization of some of the position- or momentum-space variabl...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2020-04, Vol.53 (16), p.165302 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop a transfer-matrix formulation of the scattering of electromagnetic waves by a general isotropic medium which makes use of a notion of electromagnetic transfer matrix that does not involve slicing of the scattering medium or discretization of some of the position- or momentum-space variables. This is a linear operator that we can express as a matrix with operator entries and identify with the S-matrix of an effective nonunitary quantum system. We use this observation to establish the composition property of , obtain an exact solution of the scattering problem for a non-magnetic point scatterer that avoids the divergences of the Green's function approaches, and prove a general invisibility theorem. The latter allows for an explicit characterization of a class of isotropic media displaying perfect broadband invisibility for electromagnetic waves of arbitrary polarization provided that their wavenumber k does not exceed a preassigned critical value , i.e. behaves exactly like vacuum for . Generalizing this phenomenon, we introduce and study -equivalent media that, by definition, have identical scattering features for . |
---|---|
ISSN: | 1751-8113 1751-8121 |
DOI: | 10.1088/1751-8121/ab7669 |