An entropic invariant for 2D gapped quantum phases

We introduce an entropic quantity for two-dimensional quantum spin systems to characterize gapped quantum phases modeled by local commuting projector code Hamiltonians. The definition is based on a recently introduced specific operator algebra defined on an annular region, which encodes the supersel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2020-02, Vol.53 (8), p.85302
Hauptverfasser: Kato, Kohtaro, Naaijkens, Pieter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce an entropic quantity for two-dimensional quantum spin systems to characterize gapped quantum phases modeled by local commuting projector code Hamiltonians. The definition is based on a recently introduced specific operator algebra defined on an annular region, which encodes the superselection sectors of the model. The quantity is calculable from local properties, and it is invariant under any constant-depth local quantum circuit, and thus an indicator of gapped quantum spin-liquids. We explicitly calculate the quantity for Kitaev's quantum double models, and show that the value is exactly same as the topological entanglement entropy (TEE) of the models. Our method circumvents some of the problems around extracting the TEE, allowing us to prove invariance under constant-depth quantum circuits.
ISSN:1751-8113
1751-8121
DOI:10.1088/1751-8121/ab63a5