Equivalence between nonlinear dynamical systems and urn processes
An equivalence is shown between a large class of deterministic dynamical systems and a class of stochastic processes, the balanced urn processes. These dynamical systems are governed by quasi-polynomial differential systems that are widely used in mathematical modeling while urn processes are active...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2018-11, Vol.51 (48), p.485101 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An equivalence is shown between a large class of deterministic dynamical systems and a class of stochastic processes, the balanced urn processes. These dynamical systems are governed by quasi-polynomial differential systems that are widely used in mathematical modeling while urn processes are actively studied in combinatorics and probability theory. The presented equivalence extends a theorem by Flajolet et al (2006 Discrete Mathematics and Theoretical Computer Science, AG (DMTCS Proc.) pp 59-118) already establishing an isomorphism between urn processes and a particular class of differential systems with monomial vector fields. The present result is based on the fact that such monomial differential systems are canonical forms for more general dynamical systems. |
---|---|
ISSN: | 1751-8113 1751-8121 |
DOI: | 10.1088/1751-8121/aae770 |