Quantum circuits and low-degree polynomials over F2

In this work we explore a correspondence between quantum circuits and low-degree polynomials over the finite field F2. Any quantum circuit made up of Hadamard, Z, controlled-Z and controlled-controlled-Z gates gives rise to a degree-3 polynomial over F2 such that calculating quantum circuit amplitud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2017-01, Vol.50 (8)
1. Verfasser: Montanaro, Ashley
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Journal of physics. A, Mathematical and theoretical
container_volume 50
creator Montanaro, Ashley
description In this work we explore a correspondence between quantum circuits and low-degree polynomials over the finite field F2. Any quantum circuit made up of Hadamard, Z, controlled-Z and controlled-controlled-Z gates gives rise to a degree-3 polynomial over F2 such that calculating quantum circuit amplitudes is equivalent to counting zeroes of the corresponding polynomial. We exploit this connection, which is especially clean and simple for this particular gate set, in two directions. First, we give proofs of classical hardness results based on quantum circuit concepts. Second, we find efficient classical simulation algorithms for certain classes of quantum circuits based on efficient algorithms for classes of polynomials.
doi_str_mv 10.1088/1751-8121/aa565f
format Article
fullrecord <record><control><sourceid>iop</sourceid><recordid>TN_cdi_iop_journals_10_1088_1751_8121_aa565f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aaa565f</sourcerecordid><originalsourceid>FETCH-LOGICAL-i137t-47e9d38a1dab5366d975a3c60ea8baff43b0b3366a5c175813aca1fa7bd592383</originalsourceid><addsrcrecordid>eNptj81Lw0AQxRdRsFbvHvfizdiZTDbZHKXYKhRE0PMyye5KSpoN-VD8702o9ORp3sw85s1PiFuEBwStV5gpjDTGuGJWqfJnYnEanZ800qW46vs9gEogjxeC3kZuhvEgy6orx2roJTdW1uE7su6zc062of5pwqHiupfhy3VyE1-LCz-17uavLsXH5ul9_RztXrcv68ddVCFlQ5RkLrekGS0XitLU5pliKlNwrAv2PqECCpoWrMrpPY3EJaPnrLAqj0nTUtwf71ahNfswds2UZhDMDGxmIjPTmSPwZL_7x85GgdEGdAIQm9Z6-gXCXlUK</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum circuits and low-degree polynomials over F2</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Montanaro, Ashley</creator><creatorcontrib>Montanaro, Ashley</creatorcontrib><description>In this work we explore a correspondence between quantum circuits and low-degree polynomials over the finite field F2. Any quantum circuit made up of Hadamard, Z, controlled-Z and controlled-controlled-Z gates gives rise to a degree-3 polynomial over F2 such that calculating quantum circuit amplitudes is equivalent to counting zeroes of the corresponding polynomial. We exploit this connection, which is especially clean and simple for this particular gate set, in two directions. First, we give proofs of classical hardness results based on quantum circuit concepts. Second, we find efficient classical simulation algorithms for certain classes of quantum circuits based on efficient algorithms for classes of polynomials.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/aa565f</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>computational complexity ; quantum circuits ; quantum computing</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2017-01, Vol.50 (8)</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/aa565f/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53825,53872</link.rule.ids></links><search><creatorcontrib>Montanaro, Ashley</creatorcontrib><title>Quantum circuits and low-degree polynomials over F2</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>In this work we explore a correspondence between quantum circuits and low-degree polynomials over the finite field F2. Any quantum circuit made up of Hadamard, Z, controlled-Z and controlled-controlled-Z gates gives rise to a degree-3 polynomial over F2 such that calculating quantum circuit amplitudes is equivalent to counting zeroes of the corresponding polynomial. We exploit this connection, which is especially clean and simple for this particular gate set, in two directions. First, we give proofs of classical hardness results based on quantum circuit concepts. Second, we find efficient classical simulation algorithms for certain classes of quantum circuits based on efficient algorithms for classes of polynomials.</description><subject>computational complexity</subject><subject>quantum circuits</subject><subject>quantum computing</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNptj81Lw0AQxRdRsFbvHvfizdiZTDbZHKXYKhRE0PMyye5KSpoN-VD8702o9ORp3sw85s1PiFuEBwStV5gpjDTGuGJWqfJnYnEanZ800qW46vs9gEogjxeC3kZuhvEgy6orx2roJTdW1uE7su6zc062of5pwqHiupfhy3VyE1-LCz-17uavLsXH5ul9_RztXrcv68ddVCFlQ5RkLrekGS0XitLU5pliKlNwrAv2PqECCpoWrMrpPY3EJaPnrLAqj0nTUtwf71ahNfswds2UZhDMDGxmIjPTmSPwZL_7x85GgdEGdAIQm9Z6-gXCXlUK</recordid><startdate>20170118</startdate><enddate>20170118</enddate><creator>Montanaro, Ashley</creator><general>IOP Publishing</general><scope/></search><sort><creationdate>20170118</creationdate><title>Quantum circuits and low-degree polynomials over F2</title><author>Montanaro, Ashley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i137t-47e9d38a1dab5366d975a3c60ea8baff43b0b3366a5c175813aca1fa7bd592383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>computational complexity</topic><topic>quantum circuits</topic><topic>quantum computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montanaro, Ashley</creatorcontrib><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montanaro, Ashley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum circuits and low-degree polynomials over F2</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2017-01-18</date><risdate>2017</risdate><volume>50</volume><issue>8</issue><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>In this work we explore a correspondence between quantum circuits and low-degree polynomials over the finite field F2. Any quantum circuit made up of Hadamard, Z, controlled-Z and controlled-controlled-Z gates gives rise to a degree-3 polynomial over F2 such that calculating quantum circuit amplitudes is equivalent to counting zeroes of the corresponding polynomial. We exploit this connection, which is especially clean and simple for this particular gate set, in two directions. First, we give proofs of classical hardness results based on quantum circuit concepts. Second, we find efficient classical simulation algorithms for certain classes of quantum circuits based on efficient algorithms for classes of polynomials.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/aa565f</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2017-01, Vol.50 (8)
issn 1751-8113
1751-8121
language eng
recordid cdi_iop_journals_10_1088_1751_8121_aa565f
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects computational complexity
quantum circuits
quantum computing
title Quantum circuits and low-degree polynomials over F2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T22%3A19%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20circuits%20and%20low-degree%20polynomials%20over%20F2&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Montanaro,%20Ashley&rft.date=2017-01-18&rft.volume=50&rft.issue=8&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/aa565f&rft_dat=%3Ciop%3Eaaa565f%3C/iop%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true