Quantum circuits and low-degree polynomials over F2
In this work we explore a correspondence between quantum circuits and low-degree polynomials over the finite field F2. Any quantum circuit made up of Hadamard, Z, controlled-Z and controlled-controlled-Z gates gives rise to a degree-3 polynomial over F2 such that calculating quantum circuit amplitud...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2017-01, Vol.50 (8) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Journal of physics. A, Mathematical and theoretical |
container_volume | 50 |
creator | Montanaro, Ashley |
description | In this work we explore a correspondence between quantum circuits and low-degree polynomials over the finite field F2. Any quantum circuit made up of Hadamard, Z, controlled-Z and controlled-controlled-Z gates gives rise to a degree-3 polynomial over F2 such that calculating quantum circuit amplitudes is equivalent to counting zeroes of the corresponding polynomial. We exploit this connection, which is especially clean and simple for this particular gate set, in two directions. First, we give proofs of classical hardness results based on quantum circuit concepts. Second, we find efficient classical simulation algorithms for certain classes of quantum circuits based on efficient algorithms for classes of polynomials. |
doi_str_mv | 10.1088/1751-8121/aa565f |
format | Article |
fullrecord | <record><control><sourceid>iop</sourceid><recordid>TN_cdi_iop_journals_10_1088_1751_8121_aa565f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aaa565f</sourcerecordid><originalsourceid>FETCH-LOGICAL-i137t-47e9d38a1dab5366d975a3c60ea8baff43b0b3366a5c175813aca1fa7bd592383</originalsourceid><addsrcrecordid>eNptj81Lw0AQxRdRsFbvHvfizdiZTDbZHKXYKhRE0PMyye5KSpoN-VD8702o9ORp3sw85s1PiFuEBwStV5gpjDTGuGJWqfJnYnEanZ800qW46vs9gEogjxeC3kZuhvEgy6orx2roJTdW1uE7su6zc062of5pwqHiupfhy3VyE1-LCz-17uavLsXH5ul9_RztXrcv68ddVCFlQ5RkLrekGS0XitLU5pliKlNwrAv2PqECCpoWrMrpPY3EJaPnrLAqj0nTUtwf71ahNfswds2UZhDMDGxmIjPTmSPwZL_7x85GgdEGdAIQm9Z6-gXCXlUK</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum circuits and low-degree polynomials over F2</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Montanaro, Ashley</creator><creatorcontrib>Montanaro, Ashley</creatorcontrib><description>In this work we explore a correspondence between quantum circuits and low-degree polynomials over the finite field F2. Any quantum circuit made up of Hadamard, Z, controlled-Z and controlled-controlled-Z gates gives rise to a degree-3 polynomial over F2 such that calculating quantum circuit amplitudes is equivalent to counting zeroes of the corresponding polynomial. We exploit this connection, which is especially clean and simple for this particular gate set, in two directions. First, we give proofs of classical hardness results based on quantum circuit concepts. Second, we find efficient classical simulation algorithms for certain classes of quantum circuits based on efficient algorithms for classes of polynomials.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/aa565f</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>computational complexity ; quantum circuits ; quantum computing</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2017-01, Vol.50 (8)</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/aa565f/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53825,53872</link.rule.ids></links><search><creatorcontrib>Montanaro, Ashley</creatorcontrib><title>Quantum circuits and low-degree polynomials over F2</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>In this work we explore a correspondence between quantum circuits and low-degree polynomials over the finite field F2. Any quantum circuit made up of Hadamard, Z, controlled-Z and controlled-controlled-Z gates gives rise to a degree-3 polynomial over F2 such that calculating quantum circuit amplitudes is equivalent to counting zeroes of the corresponding polynomial. We exploit this connection, which is especially clean and simple for this particular gate set, in two directions. First, we give proofs of classical hardness results based on quantum circuit concepts. Second, we find efficient classical simulation algorithms for certain classes of quantum circuits based on efficient algorithms for classes of polynomials.</description><subject>computational complexity</subject><subject>quantum circuits</subject><subject>quantum computing</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNptj81Lw0AQxRdRsFbvHvfizdiZTDbZHKXYKhRE0PMyye5KSpoN-VD8702o9ORp3sw85s1PiFuEBwStV5gpjDTGuGJWqfJnYnEanZ800qW46vs9gEogjxeC3kZuhvEgy6orx2roJTdW1uE7su6zc062of5pwqHiupfhy3VyE1-LCz-17uavLsXH5ul9_RztXrcv68ddVCFlQ5RkLrekGS0XitLU5pliKlNwrAv2PqECCpoWrMrpPY3EJaPnrLAqj0nTUtwf71ahNfswds2UZhDMDGxmIjPTmSPwZL_7x85GgdEGdAIQm9Z6-gXCXlUK</recordid><startdate>20170118</startdate><enddate>20170118</enddate><creator>Montanaro, Ashley</creator><general>IOP Publishing</general><scope/></search><sort><creationdate>20170118</creationdate><title>Quantum circuits and low-degree polynomials over F2</title><author>Montanaro, Ashley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i137t-47e9d38a1dab5366d975a3c60ea8baff43b0b3366a5c175813aca1fa7bd592383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>computational complexity</topic><topic>quantum circuits</topic><topic>quantum computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montanaro, Ashley</creatorcontrib><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montanaro, Ashley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum circuits and low-degree polynomials over F2</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2017-01-18</date><risdate>2017</risdate><volume>50</volume><issue>8</issue><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>In this work we explore a correspondence between quantum circuits and low-degree polynomials over the finite field F2. Any quantum circuit made up of Hadamard, Z, controlled-Z and controlled-controlled-Z gates gives rise to a degree-3 polynomial over F2 such that calculating quantum circuit amplitudes is equivalent to counting zeroes of the corresponding polynomial. We exploit this connection, which is especially clean and simple for this particular gate set, in two directions. First, we give proofs of classical hardness results based on quantum circuit concepts. Second, we find efficient classical simulation algorithms for certain classes of quantum circuits based on efficient algorithms for classes of polynomials.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/aa565f</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8113 |
ispartof | Journal of physics. A, Mathematical and theoretical, 2017-01, Vol.50 (8) |
issn | 1751-8113 1751-8121 |
language | eng |
recordid | cdi_iop_journals_10_1088_1751_8121_aa565f |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | computational complexity quantum circuits quantum computing |
title | Quantum circuits and low-degree polynomials over F2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T22%3A19%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20circuits%20and%20low-degree%20polynomials%20over%20F2&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Montanaro,%20Ashley&rft.date=2017-01-18&rft.volume=50&rft.issue=8&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/aa565f&rft_dat=%3Ciop%3Eaaa565f%3C/iop%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |