Quantum circuits and low-degree polynomials over F2

In this work we explore a correspondence between quantum circuits and low-degree polynomials over the finite field F2. Any quantum circuit made up of Hadamard, Z, controlled-Z and controlled-controlled-Z gates gives rise to a degree-3 polynomial over F2 such that calculating quantum circuit amplitud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2017-01, Vol.50 (8)
1. Verfasser: Montanaro, Ashley
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work we explore a correspondence between quantum circuits and low-degree polynomials over the finite field F2. Any quantum circuit made up of Hadamard, Z, controlled-Z and controlled-controlled-Z gates gives rise to a degree-3 polynomial over F2 such that calculating quantum circuit amplitudes is equivalent to counting zeroes of the corresponding polynomial. We exploit this connection, which is especially clean and simple for this particular gate set, in two directions. First, we give proofs of classical hardness results based on quantum circuit concepts. Second, we find efficient classical simulation algorithms for certain classes of quantum circuits based on efficient algorithms for classes of polynomials.
ISSN:1751-8113
1751-8121
DOI:10.1088/1751-8121/aa565f