Enhanced flood risk with 1.5 °C global warming in the Ganges-Brahmaputra-Meghna basin
Flood hazard is a global problem, but regions such as south Asia, where people's livelihoods are highly dependent on water resources, can be affected disproportionally. The 2017 monsoon flooding in the Ganges-Brahmaputra-Meghna (GBM) basin, with record river levels observed, resulted in ∼1200 d...
Gespeichert in:
Veröffentlicht in: | Environmental research letters 2019-07, Vol.14 (7), p.74031 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Flood hazard is a global problem, but regions such as south Asia, where people's livelihoods are highly dependent on water resources, can be affected disproportionally. The 2017 monsoon flooding in the Ganges-Brahmaputra-Meghna (GBM) basin, with record river levels observed, resulted in ∼1200 deaths, and dramatic loss of crops and infrastructure. The recent Paris Agreement called for research into impacts avoided by stabilizing climate at 1.5 °C over 2 °C global warming above pre-industrial conditions. Climate model scenarios representing these warming levels were combined with a high-resolution flood hazard model over the GBM region. The simulations of 1.5 °C and 2 °C warming indicate an increase in extreme precipitation and corresponding flood hazard over the GBM basin compared to the current climate. So, for example, even with global warming limited to 1.5 °C, for extreme precipitation events such as the south Asian crisis in 2017 there is a detectable increase in the likelihood in flooding. The additional ∼0.6 °C warming needed to take us from current climate to 1.5 °C highlights the changed flood risk even with low levels of warming. |
---|---|
ISSN: | 1748-9326 1748-9326 |
DOI: | 10.1088/1748-9326/ab10ee |