Enhanced flood risk with 1.5 °C global warming in the Ganges-Brahmaputra-Meghna basin

Flood hazard is a global problem, but regions such as south Asia, where people's livelihoods are highly dependent on water resources, can be affected disproportionally. The 2017 monsoon flooding in the Ganges-Brahmaputra-Meghna (GBM) basin, with record river levels observed, resulted in ∼1200 d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research letters 2019-07, Vol.14 (7), p.74031
Hauptverfasser: Uhe, P F, Mitchell, D M, Bates, P D, Sampson, C C, Smith, A M, Islam, A S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Flood hazard is a global problem, but regions such as south Asia, where people's livelihoods are highly dependent on water resources, can be affected disproportionally. The 2017 monsoon flooding in the Ganges-Brahmaputra-Meghna (GBM) basin, with record river levels observed, resulted in ∼1200 deaths, and dramatic loss of crops and infrastructure. The recent Paris Agreement called for research into impacts avoided by stabilizing climate at 1.5 °C over 2 °C global warming above pre-industrial conditions. Climate model scenarios representing these warming levels were combined with a high-resolution flood hazard model over the GBM region. The simulations of 1.5 °C and 2 °C warming indicate an increase in extreme precipitation and corresponding flood hazard over the GBM basin compared to the current climate. So, for example, even with global warming limited to 1.5 °C, for extreme precipitation events such as the south Asian crisis in 2017 there is a detectable increase in the likelihood in flooding. The additional ∼0.6 °C warming needed to take us from current climate to 1.5 °C highlights the changed flood risk even with low levels of warming.
ISSN:1748-9326
1748-9326
DOI:10.1088/1748-9326/ab10ee