Exact partition function of the Potts model on the Sierpinski gasket and the Hanoi lattice

We present an analytic study of the Potts model partition function on the Sierpinski and Hanoi lattices, which are self-similar lattices of triangular shape with non integer Hausdorff dimension. Both lattices are examples of non-trivial thermodynamics in less than two dimensions, where mean field th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical mechanics 2024-08, Vol.2024 (8), p.83101
1. Verfasser: Alvarez, P D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an analytic study of the Potts model partition function on the Sierpinski and Hanoi lattices, which are self-similar lattices of triangular shape with non integer Hausdorff dimension. Both lattices are examples of non-trivial thermodynamics in less than two dimensions, where mean field theory does not apply. We used and explain a method based on ideas of graph theory and renormalization group theory to derive exact equations for appropriate variables that are similar to the restricted partition functions. We benchmark our method with Metropolis Monte Carlo simulations. The analysis of fixed points reveals information of location of the Fisher zeros and we provide a conjecture about the location of zeros in terms of the boundary of the basins of attraction.
ISSN:1742-5468
1742-5468
DOI:10.1088/1742-5468/ad64bc