Persistence discontinuity in disordered contact processes with long-range interactions

We study the local persistence probability during non-stationary time evolutions in disordered contact processes with long-range interactions by a combination of the strong-disorder renormalization group method, a phenomenological theory of rare regions, and numerical simulations. We find that, for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical mechanics 2020-08, Vol.2020 (8), p.83206
1. Verfasser: Juhász, Róbert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the local persistence probability during non-stationary time evolutions in disordered contact processes with long-range interactions by a combination of the strong-disorder renormalization group method, a phenomenological theory of rare regions, and numerical simulations. We find that, for interactions decaying as an inverse power of the distance, the persistence probability tends to a non-zero limit not only in the inactive phase but also in the critical point. Thus, unlike in the contact process with short-range interactions, the persistence in the limit t → ∞ is a discontinuous function of the control parameter. For stretched exponentially decaying interactions, the limiting value of the persistence is found to remain continuous, similar to the model with short-range interactions.
ISSN:1742-5468
1742-5468
DOI:10.1088/1742-5468/aba898