Resolidification-controlled melt dynamics under fast transient tokamak plasma loads
Studies of macroscopic melt motion induced by fast transient power loads and the ensuing damage to plasma-facing components are critical for ITER. Based on state-of-the-art experiments, heat transfer is argued to be strongly entangled with fluid dynamics. The physics model of the MEMOS-U code is int...
Gespeichert in:
Veröffentlicht in: | Nuclear fusion 2020-10, Vol.60 (10), p.104001 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Studies of macroscopic melt motion induced by fast transient power loads and the ensuing damage to plasma-facing components are critical for ITER. Based on state-of-the-art experiments, heat transfer is argued to be strongly entangled with fluid dynamics. The physics model of the MEMOS-U code is introduced. Simulations are reported of recent tokamak experiments concerning deliberate transient melting of beryllium main chamber tiles (JET) and tungsten divertor components (ASDEX Upgrade, JET). MEMOS-U is demonstrated to capture the main physics responsible for melt dynamics and to reproduce the observed surface deformation. The intricate role of resolidification is elucidated. |
---|---|
ISSN: | 0029-5515 1741-4326 1741-4326 |
DOI: | 10.1088/1741-4326/abadac |