Real-time detection and discrimination of visual perception using electrocorticographic signals

Objective. Several neuroimaging studies have demonstrated that the ventral temporal cortex contains specialized regions that process visual stimuli. This study investigated the spatial and temporal dynamics of electrocorticographic (ECoG) responses to different types and colors of visual stimulation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neural engineering 2018-06, Vol.15 (3), p.036001-036001
Hauptverfasser: Kapeller, C, Ogawa, H, Schalk, G, Kunii, N, Coon, W G, Scharinger, J, Guger, C, Kamada, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objective. Several neuroimaging studies have demonstrated that the ventral temporal cortex contains specialized regions that process visual stimuli. This study investigated the spatial and temporal dynamics of electrocorticographic (ECoG) responses to different types and colors of visual stimulation that were presented to four human participants, and demonstrated a real-time decoder that detects and discriminates responses to untrained natural images. Approach. ECoG signals from the participants were recorded while they were shown colored and greyscale versions of seven types of visual stimuli (images of faces, objects, bodies, line drawings, digits, and kanji and hiragana characters), resulting in 14 classes for discrimination (experiment I). Additionally, a real-time system asynchronously classified ECoG responses to faces, kanji and black screens presented via a monitor (experiment II), or to natural scenes (i.e. the face of an experimenter, natural images of faces and kanji, and a mirror) (experiment III). Outcome measures in all experiments included the discrimination performance across types based on broadband γ activity. Main results. Experiment I demonstrated an offline classification accuracy of 72.9% when discriminating among the seven types (without color separation). Further discrimination of grey versus colored images reached an accuracy of 67.1%. Discriminating all colors and types (14 classes) yielded an accuracy of 52.1%. In experiment II and III, the real-time decoder correctly detected 73.7% responses to face, kanji and black computer stimuli and 74.8% responses to presented natural scenes. Significance. Seven different types and their color information (either grey or color) could be detected and discriminated using broadband γ activity. Discrimination performance maximized for combined spatial-temporal information. The discrimination of stimulus color information provided the first ECoG-based evidence for color-related population-level cortical broadband γ responses in humans. Stimulus categories can be detected by their ECoG responses in real time within 500 ms with respect to stimulus onset.
ISSN:1741-2560
1741-2552
DOI:10.1088/1741-2552/aaa9f6