A study on analytical solutions of one of the important shallow water wave equations and its stability analysis

The present research uses the modified w g -expansion technique to give analytical solutions for the nonlinear time fractional integro-differential Kadomtsev-Petviashvili (KP) hierarchy equation with beta fractional derivative. The modified w g -expansion technique is an important method for finding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica scripta 2024-12, Vol.99 (12), p.125211
Hauptverfasser: Deniz, H Arzu, Özkan, E Mehmet, Özkan, Ayten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present research uses the modified w g -expansion technique to give analytical solutions for the nonlinear time fractional integro-differential Kadomtsev-Petviashvili (KP) hierarchy equation with beta fractional derivative. The modified w g -expansion technique is an important method for finding analytical solutions to nonlinear equations. The suggested approach produces three sorts of solutions: trigonometric, hyperbolic, and rational. These answers have been discovered with the aid of a software tool. Additionally, stability analysis of observed governing model solutions is used to validate scientific calculations. Furthermore, the 3-dimensional, contour, and 2-dimensional images are provided for a better understanding of the behavior of the solutions.
ISSN:0031-8949
1402-4896
DOI:10.1088/1402-4896/ad88b7