A novel discretization of the Yajima-Oikawa equation: Cauchy matrix approach

The Cauchy matrix approach, rooted in the Sylvester equation, plays a crucial role in defining the τ functions of nonlinear evolution equations. In this paper, the Cauchy matrix approach is employed to introduce a novel integrable semi-discrete counterpart of the one-dimensional Yajima-Oikawa (YO) s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica scripta 2024-10, Vol.99 (10), p.105206
Hauptverfasser: Tian, Hong-juan, Silem, Abdselam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Cauchy matrix approach, rooted in the Sylvester equation, plays a crucial role in defining the τ functions of nonlinear evolution equations. In this paper, the Cauchy matrix approach is employed to introduce a novel integrable semi-discrete counterpart of the one-dimensional Yajima-Oikawa (YO) system. This new system is linked with the differential-difference Kadomtsev-Petviashvili (KP) equation with self-consistent sources (SCS). Based on the Cauchy matrix approach of the KP system, we systematically construct multiple soliton and multiple pole solutions. Furthermore, we analyze and illustrate various examples of soliton solutions for further understanding.
ISSN:0031-8949
1402-4896
DOI:10.1088/1402-4896/ad70fa