Unraveling the effects of non-parabolicity on electron energy levels in InP/InAs/InP heterostructures
In this research, electron energy levels were calculated analytically using Nelson’s formula, the shooting method, and Garrett’s formula for effective mass. These calculations were performed for a rectangular finite deep potential well, focusing on the InP/InAs/InP heterostructure, which is a narrow...
Gespeichert in:
Veröffentlicht in: | Physica scripta 2024-07, Vol.99 (7), p.75933 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this research, electron energy levels were calculated analytically using Nelson’s formula, the shooting method, and Garrett’s formula for effective mass. These calculations were performed for a rectangular finite deep potential well, focusing on the InP/InAs/InP heterostructure, which is a narrow-bandgap semiconductor system. Our results demonstrate that the nonparabolicity of the dispersion has a more significant effect on higher energy levels compared to lower ones, with deviations of up to 15% for the third energy level. An equation estimating the number of observable energy levels in the potential well is suggested, revealing that considering nonparabolicity leads to a 20% increase in the number of levels compared to the parabolic dispersion case. The relationship between the widths of infinite and finite potential wells for equivalent energy levels follows a linear behaviour, with bonding coefficients ranging from 95,93% to 97,49% and a maximum difference of 1.5% between parabolic and non-parabolic cases. The transcendental equation for the energy levels is linearized, yielding a fourth-order equation that provides results within 98% accuracy compared to the original equation. These findings contribute to the understanding of the energy distribution in InP/InAs/InP heterostructures with a view to their application in optoelectronic devices such as lasers, light-emitting diodes |
---|---|
ISSN: | 0031-8949 1402-4896 |
DOI: | 10.1088/1402-4896/ad400f |