Quench dynamics in the Jaynes-Cummings-Hubbard and Dicke models

Both the Jaynes-Cummings-Hubbard (JCH) and Dicke models can be thought of as idealised models of a quantum battery. In this paper we numerically investigate the charging properties of both of these models. The two models differ in how the two-level systems are contained in cavities. In the Dicke mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica scripta 2024-05, Vol.99 (5), p.55118
Hauptverfasser: Hogan, Andrew R, Martin, Andy M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Both the Jaynes-Cummings-Hubbard (JCH) and Dicke models can be thought of as idealised models of a quantum battery. In this paper we numerically investigate the charging properties of both of these models. The two models differ in how the two-level systems are contained in cavities. In the Dicke model, the N two-level systems are contained in a single cavity, while in the JCH model the two-level systems each have their own cavity and are able to pass photons between them. In each of these models we consider a scenario where the two-level systems start in the ground state and the coupling parameter between the photon and the two-level systems is quenched. Each of these models display a maximum charging power that scales with the size of the battery N and no super charging was found. Charging power also scales with the square root of the average number of photons per two-level system m for both models. Finally, in the JCH model, the power was found to charge inversely with the photon-cavity coupling κ .
ISSN:0031-8949
1402-4896
DOI:10.1088/1402-4896/ad2efd