Function projective Mittag-Leffler synchronization of non-identical fractional-order neural networks

This article investigates the function projective Mittag-Leffler synchronization (FPMLS) between non-identical fractional-order neural networks (FONNs). The stability analysis is carried out using an existing lemma for the Lyapunov function in the FONN systems. Based on the stability theorem of FONN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica scripta 2024-02, Vol.99 (2), p.25251
Hauptverfasser: Baluni, Sapna, Yadav, Vijay K, Das, Subir, Cao, Jinde
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article investigates the function projective Mittag-Leffler synchronization (FPMLS) between non-identical fractional-order neural networks (FONNs). The stability analysis is carried out using an existing lemma for the Lyapunov function in the FONN systems. Based on the stability theorem of FONN, a non-linear controller is designed to achieve FPMLS. Moreover, global Mittag-Leffler synchronization (GMLS) is investigated in the context of other synchronization techniques, such as projective synchronization (PS), anti-synchronization (AS) and complete synchonization (CS). Using the definition of the Caputo derivative, the Mittag-Leffler function and the Lyapunov stability theory, some stability results for the FPMLS scheme for FONN are discussed. Finally, the proposed technique is applied to a numerical example to validate its efficiency and the unwavering quality of the several applied synchronization conditions.
ISSN:0031-8949
1402-4896
DOI:10.1088/1402-4896/ad1d41