Extension of Brauer and Rado perturbation theorems for regular matrix pencils
In this paper, we propose new results for changing eigenvalues of a regular matrix pencil A − λ B , which are based on the well-known Brauer’s theorem [A Brauer, Limits for the characteristic roots of a matrix. IV. Applications to stochastic matrices, Duke Math. J., 19, 75-91, 1952] and Rado’s theor...
Gespeichert in:
Veröffentlicht in: | Physica scripta 2023-07, Vol.98 (7), p.75230 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 75230 |
container_title | Physica scripta |
container_volume | 98 |
creator | González-Pizarro, Javier Salas, Mario Soto, Ricardo L |
description | In this paper, we propose new results for changing eigenvalues of a regular matrix pencil
A
−
λ
B
, which are based on the well-known Brauer’s theorem [A Brauer, Limits for the characteristic roots of a matrix. IV. Applications to stochastic matrices, Duke Math. J., 19, 75-91, 1952] and Rado’s theorem [B N Parlett, Symmetric matrix pencils, J. Comput. Appl. Math., 38, 373-385, 1991.]. These results allow us to change eigenvalues of the original matrix pencil without altering its regularity and in a quite simple way, even allowing to change infinite eigenvalues. We also present an extension of Rado’s theorem that allows changing eigenvalues of a regular symmetric matrix pencil without altering its symmetric structure, and we show how to use these results in order to change the eigenvalues of a quadratic polynomial matrix. Finally, we present numerical examples that confirm the expected results with the new extensions of these theorems. |
doi_str_mv | 10.1088/1402-4896/acdf28 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1402_4896_acdf28</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psacdf28</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-1e25b2209ef84bebe7e58cec3988c504e5231796a1c076ac7367b189a842ef9c3</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7ePebkybqTpG2Soy7rB6wIoueQphPtstuUpIX1v7dlxZN4Gpj5veG9R8glgxsGSi1YDjzLlS4X1tWeqyMy-10dkxmAYJnSuT4lZyltAHjJSz0jz6t9j21qQkuDp3fRDhipbWv6autAO4z9ECvbT_f-E0PEXaI-RBrxY9jaSHe2j81-BFvXbNM5OfF2m_DiZ87J-_3qbfmYrV8enpa368wJxvqMIS8qzkGjV3mFFUoslEMntFKugBwLLpjUpWUOZGmdFKWsmNJW5Ry9dmJO4PDXxZBSRG-62Oxs_DIMzFSHmbKbKbs51DFKrg-SJnRmE4bYjgb_w6_-wLtktDLSgBwdgulqL74BQ-ZvRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Extension of Brauer and Rado perturbation theorems for regular matrix pencils</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>González-Pizarro, Javier ; Salas, Mario ; Soto, Ricardo L</creator><creatorcontrib>González-Pizarro, Javier ; Salas, Mario ; Soto, Ricardo L</creatorcontrib><description>In this paper, we propose new results for changing eigenvalues of a regular matrix pencil
A
−
λ
B
, which are based on the well-known Brauer’s theorem [A Brauer, Limits for the characteristic roots of a matrix. IV. Applications to stochastic matrices, Duke Math. J., 19, 75-91, 1952] and Rado’s theorem [B N Parlett, Symmetric matrix pencils, J. Comput. Appl. Math., 38, 373-385, 1991.]. These results allow us to change eigenvalues of the original matrix pencil without altering its regularity and in a quite simple way, even allowing to change infinite eigenvalues. We also present an extension of Rado’s theorem that allows changing eigenvalues of a regular symmetric matrix pencil without altering its symmetric structure, and we show how to use these results in order to change the eigenvalues of a quadratic polynomial matrix. Finally, we present numerical examples that confirm the expected results with the new extensions of these theorems.</description><identifier>ISSN: 0031-8949</identifier><identifier>EISSN: 1402-4896</identifier><identifier>DOI: 10.1088/1402-4896/acdf28</identifier><identifier>CODEN: PHSTBO</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>eigenvalue change ; generalized eigenvalue problem ; inverse problems ; matrix pencils</subject><ispartof>Physica scripta, 2023-07, Vol.98 (7), p.75230</ispartof><rights>2023 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-1e25b2209ef84bebe7e58cec3988c504e5231796a1c076ac7367b189a842ef9c3</citedby><cites>FETCH-LOGICAL-c311t-1e25b2209ef84bebe7e58cec3988c504e5231796a1c076ac7367b189a842ef9c3</cites><orcidid>0009-0001-7340-3906 ; 0000-0003-2410-3517</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1402-4896/acdf28/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>González-Pizarro, Javier</creatorcontrib><creatorcontrib>Salas, Mario</creatorcontrib><creatorcontrib>Soto, Ricardo L</creatorcontrib><title>Extension of Brauer and Rado perturbation theorems for regular matrix pencils</title><title>Physica scripta</title><addtitle>PS</addtitle><addtitle>Phys. Scr</addtitle><description>In this paper, we propose new results for changing eigenvalues of a regular matrix pencil
A
−
λ
B
, which are based on the well-known Brauer’s theorem [A Brauer, Limits for the characteristic roots of a matrix. IV. Applications to stochastic matrices, Duke Math. J., 19, 75-91, 1952] and Rado’s theorem [B N Parlett, Symmetric matrix pencils, J. Comput. Appl. Math., 38, 373-385, 1991.]. These results allow us to change eigenvalues of the original matrix pencil without altering its regularity and in a quite simple way, even allowing to change infinite eigenvalues. We also present an extension of Rado’s theorem that allows changing eigenvalues of a regular symmetric matrix pencil without altering its symmetric structure, and we show how to use these results in order to change the eigenvalues of a quadratic polynomial matrix. Finally, we present numerical examples that confirm the expected results with the new extensions of these theorems.</description><subject>eigenvalue change</subject><subject>generalized eigenvalue problem</subject><subject>inverse problems</subject><subject>matrix pencils</subject><issn>0031-8949</issn><issn>1402-4896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7ePebkybqTpG2Soy7rB6wIoueQphPtstuUpIX1v7dlxZN4Gpj5veG9R8glgxsGSi1YDjzLlS4X1tWeqyMy-10dkxmAYJnSuT4lZyltAHjJSz0jz6t9j21qQkuDp3fRDhipbWv6autAO4z9ECvbT_f-E0PEXaI-RBrxY9jaSHe2j81-BFvXbNM5OfF2m_DiZ87J-_3qbfmYrV8enpa368wJxvqMIS8qzkGjV3mFFUoslEMntFKugBwLLpjUpWUOZGmdFKWsmNJW5Ry9dmJO4PDXxZBSRG-62Oxs_DIMzFSHmbKbKbs51DFKrg-SJnRmE4bYjgb_w6_-wLtktDLSgBwdgulqL74BQ-ZvRQ</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>González-Pizarro, Javier</creator><creator>Salas, Mario</creator><creator>Soto, Ricardo L</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0001-7340-3906</orcidid><orcidid>https://orcid.org/0000-0003-2410-3517</orcidid></search><sort><creationdate>20230701</creationdate><title>Extension of Brauer and Rado perturbation theorems for regular matrix pencils</title><author>González-Pizarro, Javier ; Salas, Mario ; Soto, Ricardo L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-1e25b2209ef84bebe7e58cec3988c504e5231796a1c076ac7367b189a842ef9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>eigenvalue change</topic><topic>generalized eigenvalue problem</topic><topic>inverse problems</topic><topic>matrix pencils</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González-Pizarro, Javier</creatorcontrib><creatorcontrib>Salas, Mario</creatorcontrib><creatorcontrib>Soto, Ricardo L</creatorcontrib><collection>CrossRef</collection><jtitle>Physica scripta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González-Pizarro, Javier</au><au>Salas, Mario</au><au>Soto, Ricardo L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extension of Brauer and Rado perturbation theorems for regular matrix pencils</atitle><jtitle>Physica scripta</jtitle><stitle>PS</stitle><addtitle>Phys. Scr</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>98</volume><issue>7</issue><spage>75230</spage><pages>75230-</pages><issn>0031-8949</issn><eissn>1402-4896</eissn><coden>PHSTBO</coden><abstract>In this paper, we propose new results for changing eigenvalues of a regular matrix pencil
A
−
λ
B
, which are based on the well-known Brauer’s theorem [A Brauer, Limits for the characteristic roots of a matrix. IV. Applications to stochastic matrices, Duke Math. J., 19, 75-91, 1952] and Rado’s theorem [B N Parlett, Symmetric matrix pencils, J. Comput. Appl. Math., 38, 373-385, 1991.]. These results allow us to change eigenvalues of the original matrix pencil without altering its regularity and in a quite simple way, even allowing to change infinite eigenvalues. We also present an extension of Rado’s theorem that allows changing eigenvalues of a regular symmetric matrix pencil without altering its symmetric structure, and we show how to use these results in order to change the eigenvalues of a quadratic polynomial matrix. Finally, we present numerical examples that confirm the expected results with the new extensions of these theorems.</abstract><pub>IOP Publishing</pub><doi>10.1088/1402-4896/acdf28</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0001-7340-3906</orcidid><orcidid>https://orcid.org/0000-0003-2410-3517</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-8949 |
ispartof | Physica scripta, 2023-07, Vol.98 (7), p.75230 |
issn | 0031-8949 1402-4896 |
language | eng |
recordid | cdi_iop_journals_10_1088_1402_4896_acdf28 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | eigenvalue change generalized eigenvalue problem inverse problems matrix pencils |
title | Extension of Brauer and Rado perturbation theorems for regular matrix pencils |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A45%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extension%20of%20Brauer%20and%20Rado%20perturbation%20theorems%20for%20regular%20matrix%20pencils&rft.jtitle=Physica%20scripta&rft.au=Gonz%C3%A1lez-Pizarro,%20Javier&rft.date=2023-07-01&rft.volume=98&rft.issue=7&rft.spage=75230&rft.pages=75230-&rft.issn=0031-8949&rft.eissn=1402-4896&rft.coden=PHSTBO&rft_id=info:doi/10.1088/1402-4896/acdf28&rft_dat=%3Ciop_cross%3Epsacdf28%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |