Extension of Brauer and Rado perturbation theorems for regular matrix pencils
In this paper, we propose new results for changing eigenvalues of a regular matrix pencil A − λ B , which are based on the well-known Brauer’s theorem [A Brauer, Limits for the characteristic roots of a matrix. IV. Applications to stochastic matrices, Duke Math. J., 19, 75-91, 1952] and Rado’s theor...
Gespeichert in:
Veröffentlicht in: | Physica scripta 2023-07, Vol.98 (7), p.75230 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose new results for changing eigenvalues of a regular matrix pencil
A
−
λ
B
, which are based on the well-known Brauer’s theorem [A Brauer, Limits for the characteristic roots of a matrix. IV. Applications to stochastic matrices, Duke Math. J., 19, 75-91, 1952] and Rado’s theorem [B N Parlett, Symmetric matrix pencils, J. Comput. Appl. Math., 38, 373-385, 1991.]. These results allow us to change eigenvalues of the original matrix pencil without altering its regularity and in a quite simple way, even allowing to change infinite eigenvalues. We also present an extension of Rado’s theorem that allows changing eigenvalues of a regular symmetric matrix pencil without altering its symmetric structure, and we show how to use these results in order to change the eigenvalues of a quadratic polynomial matrix. Finally, we present numerical examples that confirm the expected results with the new extensions of these theorems. |
---|---|
ISSN: | 0031-8949 1402-4896 |
DOI: | 10.1088/1402-4896/acdf28 |