Compton profile and charge density reconstruction by the maximum entropy method
The aim of this work is to propose a theoretical procedure to determine the electron momentum density and Compton profile of valence electrons in solids. The procedure consists in a hybrid methodology that combines the maximum entropy method and Dirac-Hartree–Fock formalism, which allows including e...
Gespeichert in:
Veröffentlicht in: | Physica scripta 2022-04, Vol.97 (4), p.45818 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this work is to propose a theoretical procedure to determine the electron momentum density and Compton profile of valence electrons in solids. The procedure consists in a hybrid methodology that combines the maximum entropy method and Dirac-Hartree–Fock formalism, which allows including exchange and correlation effects on valence electrons for distances near the atomic nucleus and that are approximated using the Breit-Wigner distribution function. This technique can be applied for a wide range of crystalline solids. The results and comparisons reported here are for: lithium, beryllium, aluminum, silicon and copper. The application of the model only requires prior knowledge of the Fermi momentum values. In addition, a reconstruction of the valence electron charge density distribution via simple expression of the Compton profile is derived. |
---|---|
ISSN: | 0031-8949 1402-4896 |
DOI: | 10.1088/1402-4896/ac60f4 |