Double shear layer evolution on the non-uniform computational mesh

This paper considers the problem of a thin shear layer evolution at Reynolds number rmRe = 400000 using the novel Compact Accurately Boundary Adjusting high-Resolution Technique (CABARET). The study is focused on the effect of the specific mesh refinement in the high shear rate areas on the flow pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica scripta 2021-12, Vol.96 (12), p.125262
Hauptverfasser: Kulikov, Yu M, Son, E E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers the problem of a thin shear layer evolution at Reynolds number rmRe = 400000 using the novel Compact Accurately Boundary Adjusting high-Resolution Technique (CABARET). The study is focused on the effect of the specific mesh refinement in the high shear rate areas on the flow properties under the influence of the developing instability. The original sequence of computational meshes (256 2 , 512 2 , 1024 2 , 2048 2 cells) is modified using an iterative refinement algorithm based on the hyperbolic tangent. The properties of the solutions obtained are discussed in terms of the initial momentum thickness and the initial vorticity thickness, viscous and dilatational dissipation rates and also integral enstrophy. The growth rate for the most unstable mode depending on the mesh resolution is considered. In conclusion the accuracy of calculated mesh functions is estimated via L 1 , L 2 , L ∞ norms.
ISSN:0031-8949
1402-4896
DOI:10.1088/1402-4896/ac3cf8