Characterization of As2Se3/MoO3 heterojunction designed for multifunctional operations
In this article, As2Se3/MoO3 heterojunction devices are structurally, compositionally, optically and electrically characterized. The heterojunction devices which are prepared by the thermal evaporation technique under vacuum pressure of 10-5 mbar are observed to exhibit amorphous nature of growth. T...
Gespeichert in:
Veröffentlicht in: | Physica scripta 2021-01, Vol.96 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, As2Se3/MoO3 heterojunction devices are structurally, compositionally, optically and electrically characterized. The heterojunction devices which are prepared by the thermal evaporation technique under vacuum pressure of 10-5 mbar are observed to exhibit amorphous nature of growth. The optical spectrophotometry measurements and analyses on the heterojunction devices revealed a conduction and valence band offsets of values of 2.64 and 4.08 eV, respectively. In addition, the dielectric dispersion and the optical conductivity parametric analyses have shown that the heterojunction could exhibit large drift mobility value up to 73.7 cm2 V−1 s−1. From electrical point of view, while the capacitance- voltage curves reveal characteristics of MOSFET devices, the current--voltage curves display tunneling diode characteristics. The features of the As2Se3/MoO3 devices including the band offsets, drift mobility, plasmon frequency, microwave band filtering and MOSFET characteristics make them attractive for use as thin films transistors suitable electrical and optical applications. |
---|---|
ISSN: | 0031-8949 1402-4896 |
DOI: | 10.1088/1402-4896/abc384 |