Analytical solution of the Feynman Kernel for general exponential-type potentials
This paper presents an analytical path-integral treatment of the -states of an exponential-type potential. We propose a generalization of the Pekeris approximation of the centrifugal term adapted to deformed potentials. To obtain solutions of the radial Feynman Kernel for arbitrary angular number, w...
Gespeichert in:
Veröffentlicht in: | Physica scripta 2019-05, Vol.94 (5), p.55204 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 55204 |
container_title | Physica scripta |
container_volume | 94 |
creator | Bakhti, H Diaf, A Hachama, M |
description | This paper presents an analytical path-integral treatment of the -states of an exponential-type potential. We propose a generalization of the Pekeris approximation of the centrifugal term adapted to deformed potentials. To obtain solutions of the radial Feynman Kernel for arbitrary angular number, we perform a nontrivial change of variable accompanied by a local time rescaling. Using Euler angles and the isomorphism between S3 and SU(2), we convert the radial path integral into a maniable one. Analytical expressions of the energy spectrum and the normalized -state eigenfunctions are derived from the Green function. Several potentials are obtained as special cases of the general exponential-type potential. Thus, their eigenvalues and eigenfunctions are deduced straightforwardly. Numerical results show that our technique improves the state-of-the-art. |
doi_str_mv | 10.1088/1402-4896/ab05f3 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1402_4896_ab05f3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psab05f3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-1f71bd20ab8a165488c910875b41b03a268b145945dcbf72d2afcb842fe67fed3</originalsourceid><addsrcrecordid>eNp1kEFLxDAUhIMouK7ePeYHWPclTdv0uCyuigsi6Dkk7Yt26SYlyYL993apePM0zGPmwTeE3DK4ZyDligngmZB1udIGCpufkcXf6ZwsAHKWyVrUl-Qqxj0AL3lZL8jb2ul-TF2jexp9f0ydd9Rbmr6QbnF0B-3oCwaHPbU-0E90GKYofg_eoUud7rM0DkgHn2Ybr8mFnQRvfnVJPrYP75unbPf6-LxZ77KGS0gZsxUzLQdtpGZlIaRs6gmkKoxgBnLNS2mYKGpRtI2xFW-5to2RglssK4ttviQw_22CjzGgVUPoDjqMioE6TaJO_OrEr-ZJpsrdXOn8oPb-GCb2-H_8BzyEY8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analytical solution of the Feynman Kernel for general exponential-type potentials</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Bakhti, H ; Diaf, A ; Hachama, M</creator><creatorcontrib>Bakhti, H ; Diaf, A ; Hachama, M</creatorcontrib><description>This paper presents an analytical path-integral treatment of the -states of an exponential-type potential. We propose a generalization of the Pekeris approximation of the centrifugal term adapted to deformed potentials. To obtain solutions of the radial Feynman Kernel for arbitrary angular number, we perform a nontrivial change of variable accompanied by a local time rescaling. Using Euler angles and the isomorphism between S3 and SU(2), we convert the radial path integral into a maniable one. Analytical expressions of the energy spectrum and the normalized -state eigenfunctions are derived from the Green function. Several potentials are obtained as special cases of the general exponential-type potential. Thus, their eigenvalues and eigenfunctions are deduced straightforwardly. Numerical results show that our technique improves the state-of-the-art.</description><identifier>ISSN: 0031-8949</identifier><identifier>EISSN: 1402-4896</identifier><identifier>DOI: 10.1088/1402-4896/ab05f3</identifier><identifier>CODEN: PHSTBO</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>exponential-type potential ; Feynman Kernel ; states</subject><ispartof>Physica scripta, 2019-05, Vol.94 (5), p.55204</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-1f71bd20ab8a165488c910875b41b03a268b145945dcbf72d2afcb842fe67fed3</citedby><cites>FETCH-LOGICAL-c280t-1f71bd20ab8a165488c910875b41b03a268b145945dcbf72d2afcb842fe67fed3</cites><orcidid>0000-0002-8176-8753 ; 0000-0002-2441-5003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1402-4896/ab05f3/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824,53871</link.rule.ids></links><search><creatorcontrib>Bakhti, H</creatorcontrib><creatorcontrib>Diaf, A</creatorcontrib><creatorcontrib>Hachama, M</creatorcontrib><title>Analytical solution of the Feynman Kernel for general exponential-type potentials</title><title>Physica scripta</title><addtitle>PS</addtitle><addtitle>Phys. Scr</addtitle><description>This paper presents an analytical path-integral treatment of the -states of an exponential-type potential. We propose a generalization of the Pekeris approximation of the centrifugal term adapted to deformed potentials. To obtain solutions of the radial Feynman Kernel for arbitrary angular number, we perform a nontrivial change of variable accompanied by a local time rescaling. Using Euler angles and the isomorphism between S3 and SU(2), we convert the radial path integral into a maniable one. Analytical expressions of the energy spectrum and the normalized -state eigenfunctions are derived from the Green function. Several potentials are obtained as special cases of the general exponential-type potential. Thus, their eigenvalues and eigenfunctions are deduced straightforwardly. Numerical results show that our technique improves the state-of-the-art.</description><subject>exponential-type potential</subject><subject>Feynman Kernel</subject><subject>states</subject><issn>0031-8949</issn><issn>1402-4896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAUhIMouK7ePeYHWPclTdv0uCyuigsi6Dkk7Yt26SYlyYL993apePM0zGPmwTeE3DK4ZyDligngmZB1udIGCpufkcXf6ZwsAHKWyVrUl-Qqxj0AL3lZL8jb2ul-TF2jexp9f0ydd9Rbmr6QbnF0B-3oCwaHPbU-0E90GKYofg_eoUud7rM0DkgHn2Ybr8mFnQRvfnVJPrYP75unbPf6-LxZ77KGS0gZsxUzLQdtpGZlIaRs6gmkKoxgBnLNS2mYKGpRtI2xFW-5to2RglssK4ttviQw_22CjzGgVUPoDjqMioE6TaJO_OrEr-ZJpsrdXOn8oPb-GCb2-H_8BzyEY8A</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Bakhti, H</creator><creator>Diaf, A</creator><creator>Hachama, M</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8176-8753</orcidid><orcidid>https://orcid.org/0000-0002-2441-5003</orcidid></search><sort><creationdate>20190501</creationdate><title>Analytical solution of the Feynman Kernel for general exponential-type potentials</title><author>Bakhti, H ; Diaf, A ; Hachama, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-1f71bd20ab8a165488c910875b41b03a268b145945dcbf72d2afcb842fe67fed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>exponential-type potential</topic><topic>Feynman Kernel</topic><topic>states</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakhti, H</creatorcontrib><creatorcontrib>Diaf, A</creatorcontrib><creatorcontrib>Hachama, M</creatorcontrib><collection>CrossRef</collection><jtitle>Physica scripta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bakhti, H</au><au>Diaf, A</au><au>Hachama, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical solution of the Feynman Kernel for general exponential-type potentials</atitle><jtitle>Physica scripta</jtitle><stitle>PS</stitle><addtitle>Phys. Scr</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>94</volume><issue>5</issue><spage>55204</spage><pages>55204-</pages><issn>0031-8949</issn><eissn>1402-4896</eissn><coden>PHSTBO</coden><abstract>This paper presents an analytical path-integral treatment of the -states of an exponential-type potential. We propose a generalization of the Pekeris approximation of the centrifugal term adapted to deformed potentials. To obtain solutions of the radial Feynman Kernel for arbitrary angular number, we perform a nontrivial change of variable accompanied by a local time rescaling. Using Euler angles and the isomorphism between S3 and SU(2), we convert the radial path integral into a maniable one. Analytical expressions of the energy spectrum and the normalized -state eigenfunctions are derived from the Green function. Several potentials are obtained as special cases of the general exponential-type potential. Thus, their eigenvalues and eigenfunctions are deduced straightforwardly. Numerical results show that our technique improves the state-of-the-art.</abstract><pub>IOP Publishing</pub><doi>10.1088/1402-4896/ab05f3</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8176-8753</orcidid><orcidid>https://orcid.org/0000-0002-2441-5003</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-8949 |
ispartof | Physica scripta, 2019-05, Vol.94 (5), p.55204 |
issn | 0031-8949 1402-4896 |
language | eng |
recordid | cdi_iop_journals_10_1088_1402_4896_ab05f3 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | exponential-type potential Feynman Kernel states |
title | Analytical solution of the Feynman Kernel for general exponential-type potentials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A18%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20solution%20of%20the%20Feynman%20Kernel%20for%20general%20exponential-type%20potentials&rft.jtitle=Physica%20scripta&rft.au=Bakhti,%20H&rft.date=2019-05-01&rft.volume=94&rft.issue=5&rft.spage=55204&rft.pages=55204-&rft.issn=0031-8949&rft.eissn=1402-4896&rft.coden=PHSTBO&rft_id=info:doi/10.1088/1402-4896/ab05f3&rft_dat=%3Ciop_cross%3Epsab05f3%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |