Analytical solution of the Feynman Kernel for general exponential-type potentials

This paper presents an analytical path-integral treatment of the -states of an exponential-type potential. We propose a generalization of the Pekeris approximation of the centrifugal term adapted to deformed potentials. To obtain solutions of the radial Feynman Kernel for arbitrary angular number, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica scripta 2019-05, Vol.94 (5), p.55204
Hauptverfasser: Bakhti, H, Diaf, A, Hachama, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an analytical path-integral treatment of the -states of an exponential-type potential. We propose a generalization of the Pekeris approximation of the centrifugal term adapted to deformed potentials. To obtain solutions of the radial Feynman Kernel for arbitrary angular number, we perform a nontrivial change of variable accompanied by a local time rescaling. Using Euler angles and the isomorphism between S3 and SU(2), we convert the radial path integral into a maniable one. Analytical expressions of the energy spectrum and the normalized -state eigenfunctions are derived from the Green function. Several potentials are obtained as special cases of the general exponential-type potential. Thus, their eigenvalues and eigenfunctions are deduced straightforwardly. Numerical results show that our technique improves the state-of-the-art.
ISSN:0031-8949
1402-4896
DOI:10.1088/1402-4896/ab05f3