Localized-wave interactions for the discrete nonlinear Schrödinger equation under the nonvanishing background

In this paper, localized-wave interactions under the nonvanishing background are studied through the Darboux transformation (DT) for the discrete nonlinear Schrödinger equation. First of all, via the elementary DT, we obtain the first-order breather solution and give the parameter conditions for gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica scripta 2018-11, Vol.93 (11), p.115203
Hauptverfasser: Li, Min, Shui, Juan-Juan, Huang, Ye-Hui, Wang, Lei, Li, Heng-Ji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, localized-wave interactions under the nonvanishing background are studied through the Darboux transformation (DT) for the discrete nonlinear Schrödinger equation. First of all, via the elementary DT, we obtain the first-order breather solution and give the parameter conditions for generating Kuznetsov-Ma breathers, Akhmediev breathers, breathers with a number of bunches and spatio-temporal breathers. Moreover, we analyze the effects of parameters on the velocity and period of the breathers. Secondly, we derive the second-order solution and discuss the dynamic behaviors of breather-breather and breather-rogue wave interactions on the nonvanishing background. Finally, via the generalized DT, we construct the equal-eigenvalue degenerate second-order breather solution, and analyze the characteristics of interactions between two breathers, which is found to be different from the ones given by the elementary DT.
ISSN:0031-8949
1402-4896
DOI:10.1088/1402-4896/aae213