Localized-wave interactions for the discrete nonlinear Schrödinger equation under the nonvanishing background
In this paper, localized-wave interactions under the nonvanishing background are studied through the Darboux transformation (DT) for the discrete nonlinear Schrödinger equation. First of all, via the elementary DT, we obtain the first-order breather solution and give the parameter conditions for gen...
Gespeichert in:
Veröffentlicht in: | Physica scripta 2018-11, Vol.93 (11), p.115203 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, localized-wave interactions under the nonvanishing background are studied through the Darboux transformation (DT) for the discrete nonlinear Schrödinger equation. First of all, via the elementary DT, we obtain the first-order breather solution and give the parameter conditions for generating Kuznetsov-Ma breathers, Akhmediev breathers, breathers with a number of bunches and spatio-temporal breathers. Moreover, we analyze the effects of parameters on the velocity and period of the breathers. Secondly, we derive the second-order solution and discuss the dynamic behaviors of breather-breather and breather-rogue wave interactions on the nonvanishing background. Finally, via the generalized DT, we construct the equal-eigenvalue degenerate second-order breather solution, and analyze the characteristics of interactions between two breathers, which is found to be different from the ones given by the elementary DT. |
---|---|
ISSN: | 0031-8949 1402-4896 |
DOI: | 10.1088/1402-4896/aae213 |