Photo-induced non-collinear interlayer RKKY coupling in bulk Rashba semiconductors
The interplay between light-matter, spin-orbit, and magnetic interactions allows the investigation of light-induced magnetic phenomena that are otherwise absent without irradiation. We present our analysis of light-driven effects on the interlayer exchange coupling mediated by a bulk Rashba semicond...
Gespeichert in:
Veröffentlicht in: | New journal of physics 2024-08, Vol.26 (8), p.83016 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The interplay between light-matter, spin-orbit, and magnetic interactions allows the investigation of light-induced magnetic phenomena that are otherwise absent without irradiation. We present our analysis of light-driven effects on the interlayer exchange coupling mediated by a bulk Rashba semiconductor in a magnetic multilayer. The collinear magnetic exchange coupling mediated by the photon-dressed spin-orbit coupled electrons of BiTeI develops light-induced oscillation periods and displays new decay power laws, both of which are enhanced with an increasing light-matter coupling. For magnetic layers with non-collinear magnetization, we find a non-collinear magnetic exchange coupling uniquely generated by light-driving of the multilayer. As the non-collinear magnetic exchange coupling mediated by the photon-dressed electrons of BiTeI is unique to the irradiated system and it is enhanced with increasing light-matter coupling, this effect offers a promising platform of investigation of light-driven effects on magnetic phenomena in spin-orbit coupled systems. In this platform, light properties, such as its intensity, can serve as external knobs for inducing non-collinear couplings of the interlayer exchange and for modulating the collinear couplings. Both of these effects signify the photo-generated modification in the spin textures of spin-orbit coupled electrons in BiTeI. |
---|---|
ISSN: | 1367-2630 1367-2630 |
DOI: | 10.1088/1367-2630/ad6b43 |