Interconversion between block coherence and multipartite entanglement in many-body systems

Coherence is intrinsically related to projective measurement. When the fixed projective measurement involves higher-rank projectors, the coherence resource is referred to as block coherence, which comes from the superposition of orthogonal subspaces. Here, we establish a set of quantitative relation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2024-07, Vol.26 (7), p.73037
Hauptverfasser: Wang, Yu-Hui, Ren, Li-Hang, Hu, Ming-Liang, Bai, Yan-Kui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Coherence is intrinsically related to projective measurement. When the fixed projective measurement involves higher-rank projectors, the coherence resource is referred to as block coherence, which comes from the superposition of orthogonal subspaces. Here, we establish a set of quantitative relations for the interconversion between block coherence and multipartite entanglement under the framework of the block-incoherent operations. It is found that the converted multipartite entanglement is upper bounded by the initial block coherence of single-party system. Moreover, the generated multipartite entanglement can be transferred to its subsystems and restored to block coherence of the initial single-party system by means of local block-incoherent operations and classical communication. In addition, when only the coarse-grained quantum operations are accessible for the ancillary subsystems, we further demonstrate that a lossless resource interconversion is still realizable, and give a concrete example in three four-level systems. Our results provide a versatile approach to utilize different quantum resources in a cyclic fashion.
ISSN:1367-2630
1367-2630
DOI:10.1088/1367-2630/ad602b