The power of qutrits for non-adaptive measurement-based quantum computing

Non-locality is not only one of the most prominent quantum features but can also serve as a resource for various information-theoretical tasks. Analysing it from an information-theoretical perspective has linked it to applications such as non-adaptive measurement-based quantum computing (NMQC). In t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2023-07, Vol.25 (7), p.73007
Hauptverfasser: Mackeprang, Jelena, Bhatti, Daniel, Hoban, Matty J, Barz, Stefanie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 73007
container_title New journal of physics
container_volume 25
creator Mackeprang, Jelena
Bhatti, Daniel
Hoban, Matty J
Barz, Stefanie
description Non-locality is not only one of the most prominent quantum features but can also serve as a resource for various information-theoretical tasks. Analysing it from an information-theoretical perspective has linked it to applications such as non-adaptive measurement-based quantum computing (NMQC). In this type of quantum computing the goal is to output a multivariate function. The success of such a computation can be related to the violation of a generalised Bell inequality. So far, the investigation of binary NMQC with qubits has shown that quantum correlations can compute all Boolean functions using at most 2 n − 1 qubits, whereas local hidden variables (LHVs) are restricted to linear functions. Here, we extend these results to NMQC with qutrits and prove that quantum correlations enable the computation of all three-valued logic functions using the generalised qutrit Greenberger–Horne–Zeilinger (GHZ) state as a resource and at most 3 n − 1 qutrits. This yields a corresponding generalised GHZ type paradox for any three-valued logic function that LHVs cannot compute. We give an example for an n -variate function that can be computed with only n  + 1 qutrits, which leads to convenient generalised qutrit Bell inequalities whose quantum bound is maximal. Finally, we prove that not all functions can be computed efficiently with qutrit NMQC by presenting a counterexample.
doi_str_mv 10.1088/1367-2630/acdf77
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1367_2630_acdf77</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e31e4a27572242638f953103873f6028</doaj_id><sourcerecordid>2836508070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-e21e5b3a5ec6d39336f94ec03c7c3bb5c74bcf249d13f2c1de99434b7eac75993</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMKdYySuhPqVOD6iikelSlzK2XKcdUnVxKntgPh7EoIKF067mp2Z3R2Ergm-I7goFoTlIqU5wwttKivECZododM__Tm6CGGHMSEFpTO02rxB0rkP8ImzyaGPvo4hsc4nrWtTXeku1u-QNKBD76GBNqalDlANVN3GvkmMa7o-1u32Ep1ZvQ9w9VPn6PXxYbN8TtcvT6vl_To1nOQxBUogK5nOwOQVk4zlVnIwmBlhWFlmRvDSWMplRZilhlQgJWe8FKCNyKRkc7SafCund6rzdaP9p3K6Vt-A81ulfazNHhQwAlxTkQlK-fB8YWXGCGaFYDbHtBi8biavzrtDDyGqnet9O5yvhmme4QILPLDwxDLeheDBHrcSrMbw1ZiuGtNVU_iD5HaS1K779fyX_gVgvYTx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836508070</pqid></control><display><type>article</type><title>The power of qutrits for non-adaptive measurement-based quantum computing</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Mackeprang, Jelena ; Bhatti, Daniel ; Hoban, Matty J ; Barz, Stefanie</creator><creatorcontrib>Mackeprang, Jelena ; Bhatti, Daniel ; Hoban, Matty J ; Barz, Stefanie</creatorcontrib><description>Non-locality is not only one of the most prominent quantum features but can also serve as a resource for various information-theoretical tasks. Analysing it from an information-theoretical perspective has linked it to applications such as non-adaptive measurement-based quantum computing (NMQC). In this type of quantum computing the goal is to output a multivariate function. The success of such a computation can be related to the violation of a generalised Bell inequality. So far, the investigation of binary NMQC with qubits has shown that quantum correlations can compute all Boolean functions using at most 2 n − 1 qubits, whereas local hidden variables (LHVs) are restricted to linear functions. Here, we extend these results to NMQC with qutrits and prove that quantum correlations enable the computation of all three-valued logic functions using the generalised qutrit Greenberger–Horne–Zeilinger (GHZ) state as a resource and at most 3 n − 1 qutrits. This yields a corresponding generalised GHZ type paradox for any three-valued logic function that LHVs cannot compute. We give an example for an n -variate function that can be computed with only n  + 1 qutrits, which leads to convenient generalised qutrit Bell inequalities whose quantum bound is maximal. Finally, we prove that not all functions can be computed efficiently with qutrit NMQC by presenting a counterexample.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/acdf77</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Bell inequalities ; Bell's inequality ; Boolean functions ; Linear functions ; Physics ; Quantum computing ; quantum correlations ; quantum information ; Qubits (quantum computing)</subject><ispartof>New journal of physics, 2023-07, Vol.25 (7), p.73007</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-e21e5b3a5ec6d39336f94ec03c7c3bb5c74bcf249d13f2c1de99434b7eac75993</citedby><cites>FETCH-LOGICAL-c416t-e21e5b3a5ec6d39336f94ec03c7c3bb5c74bcf249d13f2c1de99434b7eac75993</cites><orcidid>0000-0002-8762-3053 ; 0000-0001-9765-0373 ; 0000-0002-0401-9388 ; 0000-0002-5137-6599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/acdf77/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>315,781,785,865,2103,27928,27929,38872,38894,53844,53871</link.rule.ids></links><search><creatorcontrib>Mackeprang, Jelena</creatorcontrib><creatorcontrib>Bhatti, Daniel</creatorcontrib><creatorcontrib>Hoban, Matty J</creatorcontrib><creatorcontrib>Barz, Stefanie</creatorcontrib><title>The power of qutrits for non-adaptive measurement-based quantum computing</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>Non-locality is not only one of the most prominent quantum features but can also serve as a resource for various information-theoretical tasks. Analysing it from an information-theoretical perspective has linked it to applications such as non-adaptive measurement-based quantum computing (NMQC). In this type of quantum computing the goal is to output a multivariate function. The success of such a computation can be related to the violation of a generalised Bell inequality. So far, the investigation of binary NMQC with qubits has shown that quantum correlations can compute all Boolean functions using at most 2 n − 1 qubits, whereas local hidden variables (LHVs) are restricted to linear functions. Here, we extend these results to NMQC with qutrits and prove that quantum correlations enable the computation of all three-valued logic functions using the generalised qutrit Greenberger–Horne–Zeilinger (GHZ) state as a resource and at most 3 n − 1 qutrits. This yields a corresponding generalised GHZ type paradox for any three-valued logic function that LHVs cannot compute. We give an example for an n -variate function that can be computed with only n  + 1 qutrits, which leads to convenient generalised qutrit Bell inequalities whose quantum bound is maximal. Finally, we prove that not all functions can be computed efficiently with qutrit NMQC by presenting a counterexample.</description><subject>Bell inequalities</subject><subject>Bell's inequality</subject><subject>Boolean functions</subject><subject>Linear functions</subject><subject>Physics</subject><subject>Quantum computing</subject><subject>quantum correlations</subject><subject>quantum information</subject><subject>Qubits (quantum computing)</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp1UMtOwzAQtBBIlMKdYySuhPqVOD6iikelSlzK2XKcdUnVxKntgPh7EoIKF067mp2Z3R2Ergm-I7goFoTlIqU5wwttKivECZododM__Tm6CGGHMSEFpTO02rxB0rkP8ImzyaGPvo4hsc4nrWtTXeku1u-QNKBD76GBNqalDlANVN3GvkmMa7o-1u32Ep1ZvQ9w9VPn6PXxYbN8TtcvT6vl_To1nOQxBUogK5nOwOQVk4zlVnIwmBlhWFlmRvDSWMplRZilhlQgJWe8FKCNyKRkc7SafCund6rzdaP9p3K6Vt-A81ulfazNHhQwAlxTkQlK-fB8YWXGCGaFYDbHtBi8biavzrtDDyGqnet9O5yvhmme4QILPLDwxDLeheDBHrcSrMbw1ZiuGtNVU_iD5HaS1K779fyX_gVgvYTx</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Mackeprang, Jelena</creator><creator>Bhatti, Daniel</creator><creator>Hoban, Matty J</creator><creator>Barz, Stefanie</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8762-3053</orcidid><orcidid>https://orcid.org/0000-0001-9765-0373</orcidid><orcidid>https://orcid.org/0000-0002-0401-9388</orcidid><orcidid>https://orcid.org/0000-0002-5137-6599</orcidid></search><sort><creationdate>20230701</creationdate><title>The power of qutrits for non-adaptive measurement-based quantum computing</title><author>Mackeprang, Jelena ; Bhatti, Daniel ; Hoban, Matty J ; Barz, Stefanie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-e21e5b3a5ec6d39336f94ec03c7c3bb5c74bcf249d13f2c1de99434b7eac75993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bell inequalities</topic><topic>Bell's inequality</topic><topic>Boolean functions</topic><topic>Linear functions</topic><topic>Physics</topic><topic>Quantum computing</topic><topic>quantum correlations</topic><topic>quantum information</topic><topic>Qubits (quantum computing)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mackeprang, Jelena</creatorcontrib><creatorcontrib>Bhatti, Daniel</creatorcontrib><creatorcontrib>Hoban, Matty J</creatorcontrib><creatorcontrib>Barz, Stefanie</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mackeprang, Jelena</au><au>Bhatti, Daniel</au><au>Hoban, Matty J</au><au>Barz, Stefanie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The power of qutrits for non-adaptive measurement-based quantum computing</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>25</volume><issue>7</issue><spage>73007</spage><pages>73007-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>Non-locality is not only one of the most prominent quantum features but can also serve as a resource for various information-theoretical tasks. Analysing it from an information-theoretical perspective has linked it to applications such as non-adaptive measurement-based quantum computing (NMQC). In this type of quantum computing the goal is to output a multivariate function. The success of such a computation can be related to the violation of a generalised Bell inequality. So far, the investigation of binary NMQC with qubits has shown that quantum correlations can compute all Boolean functions using at most 2 n − 1 qubits, whereas local hidden variables (LHVs) are restricted to linear functions. Here, we extend these results to NMQC with qutrits and prove that quantum correlations enable the computation of all three-valued logic functions using the generalised qutrit Greenberger–Horne–Zeilinger (GHZ) state as a resource and at most 3 n − 1 qutrits. This yields a corresponding generalised GHZ type paradox for any three-valued logic function that LHVs cannot compute. We give an example for an n -variate function that can be computed with only n  + 1 qutrits, which leads to convenient generalised qutrit Bell inequalities whose quantum bound is maximal. Finally, we prove that not all functions can be computed efficiently with qutrit NMQC by presenting a counterexample.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/acdf77</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-8762-3053</orcidid><orcidid>https://orcid.org/0000-0001-9765-0373</orcidid><orcidid>https://orcid.org/0000-0002-0401-9388</orcidid><orcidid>https://orcid.org/0000-0002-5137-6599</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-2630
ispartof New journal of physics, 2023-07, Vol.25 (7), p.73007
issn 1367-2630
1367-2630
language eng
recordid cdi_iop_journals_10_1088_1367_2630_acdf77
source DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Bell inequalities
Bell's inequality
Boolean functions
Linear functions
Physics
Quantum computing
quantum correlations
quantum information
Qubits (quantum computing)
title The power of qutrits for non-adaptive measurement-based quantum computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T14%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20power%20of%20qutrits%20for%20non-adaptive%20measurement-based%20quantum%20computing&rft.jtitle=New%20journal%20of%20physics&rft.au=Mackeprang,%20Jelena&rft.date=2023-07-01&rft.volume=25&rft.issue=7&rft.spage=73007&rft.pages=73007-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/acdf77&rft_dat=%3Cproquest_iop_j%3E2836508070%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836508070&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_e31e4a27572242638f953103873f6028&rfr_iscdi=true